Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T18:56:30.391Z Has data issue: false hasContentIssue false

Exon-primed intron-crossing (EPIC) PCR markers of Helicoverpa armigera (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  16 June 2008

W.T. Tay*
Affiliation:
Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
G.T. Behere
Affiliation:
Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
D.G. Heckel
Affiliation:
Department of Entomology, Max-Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, Jena D-07745, Germany
S.F. Lee
Affiliation:
Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
P. Batterham
Affiliation:
Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
*
*Author for correspondence Fax: +61 2 62464000 E-mail: [email protected]

Abstract

Applying microsatellite DNA markers in population genetic studies of the pest moth Helicoverpa armigera is subject to numerous technical problems, such as the high frequency of null alleles, occurrence of size homoplasy, presence of multiple copies of flanking sequence in the genome and the lack of PCR amplification robustness between populations. To overcome these difficulties, we developed exon-primed intron-crossing (EPIC) nuclear DNA markers for H. armigera based on ribosomal protein (Rp) and the Dopa Decarboxylase (DDC) genes and sequenced alleles showing length polymorphisms. Allele length polymorphisms were usually from random indels (insertions or deletions) within introns, although variation of short dinucleotide DNA repeat units was also detected. Mapping crosses demonstrated Mendelian inheritance patterns for these EPIC markers and the absence of both null alleles and allele ‘dropouts’. Three examples of allele size homoplasies due to indels were detected in EPIC markers RpL3, RpS6 and DDC, while sequencing of multiple individuals across 11 randomly selected alleles did not detect indel size homoplasies. The robustness of the EPIC-PCR markers was demonstrated by PCR amplification in the related species, H. zea, H. assulta and H. punctigera.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akagi, H., Yokozeki, Y., Inagaki, A., Mori, K. & Fujimura, T. (2001) Micron, a microsatellite-targeting transposable element in the rice genome. Molecular Genetics and Genomics 266, 471480.CrossRefGoogle ScholarPubMed
Allen, E.S. & Omland, K.E. (2003) Novel intron phylogeny supports plumage convergence in orioles (Icterus). The Auk 120, 961969.CrossRefGoogle Scholar
Altschul, S.F., Madden, T.L., Shäfer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.Google Scholar
Arcot, S.S., Wang, Z., Weber, J.L., Deininger, P.L. & Batzer, M.A. (1995) Alu repeats: a source for the genesis of primate microsatellites. Genomics 29, 136144.Google Scholar
Behere, G.T., Tay, W.T., Russell, D.A., Heckel, D.G., Appelton, B.R., Kranthi, K.R. & Batterham, P. (2007) Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evolutionary Biology 7, 117.CrossRefGoogle ScholarPubMed
Berrebi, P., Boissin, E., Fang, F. & Cattaneo-Berrebi, G. (2005) Intron polymorphism (EPIC-PCR) reveals phylogeographic structure of Zacco platypus in China: a possible target for aquaculture development. Heredity 94, 589598.CrossRefGoogle Scholar
Berrebi, P., Retif, X., Fang, F. & Zhang, C.-C. (2006) Population structure and systematics of Opsariichthys bidens (Osteichthyes: Cyprinidae) in south-east China using a new nuclear marker: the introns (EPIC-PCR). Biological Journal of the Linnean Society 87, 155166.Google Scholar
Brohede, J. & Ellegren, H. (1999) Microsatellite evolution: Polarity of substitutions within repeats and neutrality of flanking sequences. Proceedings of the Royal Society of London Series B, Biological Sciences 266, 823833.Google Scholar
Chambers, E.W., Meece, J.K., McGowan, J.A., Lovin, D.D., Hemme, R.R., Chadee, D.D., McAbee, K., Brown, S.E., Knudson, D.L. & Severson, D.W. (2007) Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti. Journal of Heredity 98, 202210.Google Scholar
Daly, D., Waltham, K., Mulley, J., Watts, P.C., Rosin, A., Kemp, S.J. & Saccheri, I.J. (2004) Trinucleotide microsatellite loci for the peppered moth (Biston betularia). Molecular Ecological Notes 4, 197–181.CrossRefGoogle Scholar
Endersby, N.M., Hoffmann, A.A., Mckechnie, S.W. & Weeks, A.R. (2007) Is there genetic structure in populations of Helicoverpa armigera from Australia? Entomologia Experimentalis et Applicata 122, 253263.CrossRefGoogle Scholar
Estoup, A., Jarne, P. & Corneut, J.-M. (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetic analysis. Molecular Ecology 11, 15911604.CrossRefGoogle Scholar
Eveleth, D.D. & Marsh, J.L. (1986) Evidence for evolutionary duplication of genes in the Dopa Decarboxylase region of Drosophila. Genetics 114, 469483.CrossRefGoogle ScholarPubMed
Fang, Q.Q., Cho, S., Regier, J.C., Mitter, C., Matthews, M., Poole, R.W., Friedlander, T.P. & Zhao, S. (1997) A new nuclear gene for insect phylogenetics: dopa decarboxylase is informative of relationships within Heliothinae (Lepidoptera: Noctuidae). Systematic Biology 46, 269283.Google Scholar
Fujita, M.K., Engstrom, T.N., Starkey, D.E. & Shaffer, H.B. (2004) Turtle phylogeny: insights from a novel nuclear intron. Molecular Phylogenetics and Evolution 31, 10311040.Google Scholar
Gaffney, P.M. (2000) Molecular tools for understanding population structure in Antarctic species. Antarctic Science 12, 288296.CrossRefGoogle Scholar
Gaggiotti, O.E., Lange, O., Rassmann, K. & Gliddon, C. (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Molecular Ecology 8, 15131520.Google Scholar
Garrick, R.C. & Sunnucks, P. (2006) Development and application of three-tiered nuclear genetic markers for basal Hexapods using single-stranded conformation polymorphism coupled with targeted DNA sequencing. BMC Genetics 7, 11.Google Scholar
Grasela, J.J. & McIntosh, A.H. (2005) Cross-species investigation of Helicoverpa armigera microsatellites as potential markers for other related species in the HelicoverpaHeliothis complex. The Journal of Insect Science 5, 47.CrossRefGoogle ScholarPubMed
Hardwick, D.F. (1965) The corn earworm complex. Memoirs of the Entomological Society of Canada 40, 1248.Google Scholar
He, M. & Haymer, D.S. (1997) Polymorphic intron sequences detected within and between populations of the Oriental fruit fly (Diptera: Tephritidae). Annals of the Entomological Society of America 90, 825831.CrossRefGoogle Scholar
Hedin, M.C. & Maddison, W.P. (2001) Phylogenetic utility and evidence for multiple copies of Elongation Factor-1a in the spider genus Habronattus (Araneae: Salticidae). Molecular Biology and Evolution 18, 15121521.CrossRefGoogle Scholar
Hubert, N., Duponchelle, F., Nunez, H., Rivera, R. & Renno, J.-F. (2006) Evidence of reproductive isolation among closely related sympatric species of Serrasalmus (Ostariophysii, Characidae) from the Upper Madeira River, Amazon, Bolivia. Journal of Fish Biology 68, 121.Google Scholar
Jarne, P. & Lagoda, P.J.L. (1996) Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution 11, 424429.Google Scholar
Ji, Y.-J. & Zhang, D.-X. (2004) Characteristics of microsatellite DNA in lepidopteran genomes and implications for their isolation. Acta Zoologica Sinica 50, 608614.Google Scholar
Ji, Y.-J., Zhang, D.-X., Hewitt, G.M., Kang, L. & Li, D.-M. (2003) Polymorphic microsatellite loci for the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) and some remarks on their isolation. Molecular Ecology Notes 3, 102104.CrossRefGoogle Scholar
Ji, Y.-J., Wu, Y.-C. & Zhang, D.-X. (2005) Novel polymorphic microsatellite markers developed in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). Insect Science 12, 331334.Google Scholar
Kawakita, A., Sota, T., Ascher, J.S., Ito, M., Tanaka, H. & Kato, M. (2003) Evolution and phylogenetic utility of alignment gaps within intron sequences of three nuclear genes in bumble bees (Bombus). Molecular Biology and Evolution 20, 8792.CrossRefGoogle ScholarPubMed
Keyghobadi, N., Roland, J. & Strobeck, C. (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Molecular Ecology 8, 1481.Google Scholar
Lee, S.F. (2006) Genome mapping in Lepidoptera. PhD thesis, University of Melbourne. Melbourne, Australia.Google Scholar
Lessa, E.P. (1992) Rapid survey of DNA sequence variation in natural populations. Molecular Biology and Evolution 9, 323330.Google ScholarPubMed
Meglécz, E., Petenian, F., Danchin, E., D'Acier, A.C., Rasplus, J.-Y. & Faure, E. (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Molecular Ecology 13, 16931700.Google Scholar
Meglécz, E., Anderson, S.J., Bourguet, D., Butcher, R., Caldas, A., Cassel-Lundhagen, A., d'Acier, A.C., Dawson, D.A., Faure, N., Fauvelot, C., Franck, P., Harper, G., Keyghobadi, N., Kluetsch, C., Muthulakshmi, M., Nagaraju, J., Patt, A., Péténian, F., Silvain, J.-F. & Wilcock, H.R. (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Molecular Biology 16, 175185.CrossRefGoogle ScholarPubMed
Miao, X.-X., Xub, S.-J., Li, M.-H., Li, M.-W., Huang, J.-H., Dai, F.-Y., Marino, S.W., Mills, D.R., Zeng, P., Mita, K., Jia, S.-H., Zhang, Y., Liu, W.-B., Xiang, H., Guo, Q.-H., Xu, A.-Y., Kong, X.-Y., Lin, H.-X., Shi, Y.-Z., Lu, G., Zhang, X., Huang, W., Yasukochi, Y., Sugasaki, T., Shimada, T., Nagaraju, J., Xiang, Z.-H., Wang, S.-Y., Goldsmith, M.R., Lu, C., Zhao, G.-P. & Huang, Y.-P. (2005) Simple sequence repeat-based consensus linkage map of Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America 102, 1630316308.CrossRefGoogle ScholarPubMed
Mitter, C., Poole, R.W. & Matthews, M. (1993) Biosystematics of the Heliothinae (Lepidoptera: Noctuidae). Annual Review of Entomology 38, 207225.Google Scholar
Mohra, C., Fellendorf, M., Segelbacher, G. & Paxton, R.J. (2000) Dinucleotide microsatellite loci for Andrena vaga and other andrenid bees from non-enriched and CT-enriched libraries. Molecular Ecology 9, 2189.Google ScholarPubMed
Nadir, E., Margalit, H., Gallily, T. & Ben-Sasson, S.A. (1996) Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proceedings of the National Academy of Sciences of the United States of America 93, 64706475.CrossRefGoogle ScholarPubMed
Nève, G. & Meglécz, E. (2000) Microsatellite frequencies in different taxa. Trends in Ecology and Evolution 15, 376377.CrossRefGoogle ScholarPubMed
O'Mahony, E.M., Tay, W.T. & Paxton, R.J. (2007) Multiple rRNA variants in a single spore of the microsporidium Nosema bombi. Journal of Eukaryotic Microbiology 54, 103109.CrossRefGoogle Scholar
O'Reilly, P.T., Canino, M.F., Bailey, K. & Bentzen, P. (2004) Inverse relationship between F ST and microsatellite polymorphism in the marine fish, walleye Pollock (Theragra chalcogramma): implications for resolving weak population structure. Molecular Ecology 13, 17991814.CrossRefGoogle ScholarPubMed
Paetkau, D., Waits, L.P., Clarkson, P.L., Craighead, L. & Strobeck, C. (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics 147, 19431957.CrossRefGoogle ScholarPubMed
Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. pp. 205247in Hillis, D.M., Moritz, C. & Mable, B.K. (Eds) Molecular Systematics. Sunderland, MA, USA, Sinauer Associates.Google Scholar
Palumbi, S.R. & Baker, C.S. (1994) Contrasting population structure from nuclear intron sequences and mtDNA of Humpback whales. Molecular Biology and Evolution 11, 426435.Google ScholarPubMed
Prasad, M.D., Muthulakshmi, M., Arunkumar, K.P., Madhu, M., Sreenu, V.B., Pavithra, V., Bose, B., Nagarajaram, H.A., Mita, K., Shimada, T. & Nagaraju, J. (2005a) SilkSatDb: a microsatellite database of the silkworm, Bombyx mori. Nucleic Acids Research 33, D403D406.CrossRefGoogle ScholarPubMed
Prasad, M.D., Muthulakshmi, M., Madhu, M., Archak, S., Mita, K. & Nagaraju, J. (2005b) Survey and Analysis of Microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics 169, 197214.CrossRefGoogle ScholarPubMed
Pringle, E.G., Baxter, S.W., Webster, C.L., Papanicolaou, A., Lee, S.F. & Jiggins, C.D. (2007) Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in Heliconius melpomene. Genetics 177, 417426.CrossRefGoogle ScholarPubMed
Queney, G., Ferrand, N., Weiss, S., Mougel, F. & Monnerot, M. (2001) Stationary distributions of microsatellite loci between divergent population groups of the European rabbit (Oryctolagus cuniculus). Molecular Biology and Evolution 18, 21692178.Google Scholar
Ramsay, L., Macaulay, M., Cradle, L., Morgante, M., degli Ivanissevich, S., Maestri, E., Powell, W. & Waugh, R. (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. The Plant Journal 17, 415425.Google Scholar
Raymond, M. & Rousset, F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.Google Scholar
Reddy, K.D., Abraham, E.G. & Nagaraju, J. (1999) Microsatellites in the silkworm, Bombyx mori: abundance, polymorphism, and strain characterization. Genome 42, 10571065.Google Scholar
Roderick, G.K. (1996) Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annual Review of Entomology 41, 325352.CrossRefGoogle ScholarPubMed
Scott, K.D., Wilkinson, K.S., Merritt, M.A., Scott, J.L., Lange, C.L., Schutze, M.K., Kent, J.K., Merritt, D.J., Grundy, P.R. & Graham, G.C. (2003) Genetic shifts in Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) over a year in the Dawson/Callide Valleys. Australian Journal of Agricultural Research 54, 739744.Google Scholar
Scott, K.D., Lange, C.L., Scott, L.J. & Gahan, L.J. (2004) Isolation and characterization of microsatellite loci from Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Molecular Ecology Notes 4, 204205.Google Scholar
Scott, K.D., Lawrence, N., Lange, C.L., Scott, L.J., Wilkinson, K.S., Merritt, M.A., Miles, M., Murray, D. & Graham, G.C. (2005a) Assessing moth migration and population structuring in Helicoverpa armigera (Lepidoptera: Noctuidae) at the regional scale: example from the Darling Downs, Australia. Journal of Economic Entomology 98, 22102219.Google Scholar
Scott, K.D., Wilkinson, K.S., Lawrence, N., Lange, C.L., Scott, L.J., Merritt, M.A., Lowe, A.J. & Graham, G.C. (2005b) Gene-flow between populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is highly variable between years. Bulletin of Entomological Research 95, 381392.CrossRefGoogle ScholarPubMed
Scott, L.J., Lawrence, N., Lange, C.L., Graham, G.C., Hardwick, S., Rossiter, L., Dillon, M.L. & Scott, K.D. (2006) Population dynamics and gene flow of Helicoverpa armigera (Lepidoptera: Noctuidae) on cotton and grain crops in the Murrumbidgee Valley, Australia. Journal of Economic Entomology 99, 155163.Google Scholar
Staden, R., Beal, K.F. & Bonfield, J.K. (2000) The Staden package, 1998. Methods in Molecular Biology 132, 115130.Google ScholarPubMed
Tan, S., Chen, X., Zhang, A. & Li, D.-M. (2001) Isolation and characterization of DNA microsatellite from cotton bollworm (Helicoverpa armigera, Hubner). Molecular Ecology Notes 1, 243244.CrossRefGoogle Scholar
Tay, W.T. & Crozier, R.H. (2001) Mating behaviour of Rhytidoponera sp. 12 ants inferred from microsatellite analysis. Molecular Ecology 10, 167173.CrossRefGoogle ScholarPubMed
Tay, W.T., Miettinen, M. & Kaitala, A. (2003) Do male golden egg bugs carry eggs they have fertilized? A microsatellite analysis. Behavioral Ecology 14, 481485.Google Scholar
Van't Hof, A.E., Zwaan, B.J., Saccheri, I.J., Daly, D., Bot, A.N.M. & Brakefield, P.M. (2005) Characterization of 28 microsatellite loci for the butterfly Bicyclus anynana. Molecular Ecology Notes 5, 169172.CrossRefGoogle Scholar
Van't Hof, A.E., Brakefield, P.M., Saccheri, I.J. & Zwaan, B.J. (2007) Evolutionary dynamics of multi-locus microsatellite arrangements in the genome of the butterfuly Bicyclus anynana, with implications for other Lepidoptera. Heredity 95, 320328.CrossRefGoogle Scholar
Villablanca, F.X., Roderick, G.K. & Palumbi, S.R. (1998) Invasion genetics of the Mediterranean fruit fly: variation in multiple nuclear introns. Molecular Ecology 7, 547560.Google Scholar
Wardill, T.J., Scott, K.D., Graham, G.C. & Zalucki, M.P. (2004) Isolation and characterization of microsatellite loci from Chiasmia assimilis (Warren, 1899) (Lepidoptera: Geometridae). Molecular Ecology Notes 4, 358360.CrossRefGoogle Scholar
Wilder, J. & Hollocher, H. (2001) Mobile elements and the genesis of microsatellites in Dipterans. Molecular Biology and Evolution 18, 384392.Google Scholar
Wright, S. (1951) The genetical structure of populations. Ann Eugenics 15, 323354.Google Scholar
Yasukochi, Y., Ashakumary, L.A., Baba, K., Yoshido, A. & Sahara, K. (2006) A second generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects. Genetics, 173, 13191328.CrossRefGoogle ScholarPubMed
Zhang, D.-X. (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends in Ecology and Evolution 19, 507509.Google Scholar
Zhang, D.-X. & Hewitt, G.M. (2003) Nuclear DNA analyses in genetic studies of populations practice, problems and prospects. Molecular Ecology 12, 563584.CrossRefGoogle Scholar
Zhou, Y., Gu, H. & Dorn, S. (2005) Isolation of microsatellite loci in the colding moth, Cydia pomonella (Lepidoptera: Tortricidae). Molecular Ecology Notes 5, 226227.CrossRefGoogle Scholar