Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T09:27:27.414Z Has data issue: false hasContentIssue false

A contribution towards simplifying area-wide tsetse surveys using medium resolution meteorological satellite data

Published online by Cambridge University Press:  09 March 2007

G. Hendrickx
Affiliation:
FAO Trypanosomiasis project GCP-RAF-347-BEL, BP 2034 Bobo Dioulasso, Burkina Faso
A. Napala
Affiliation:
FAO Trypanosomiasis project GCP-RAF-347-BEL, BP 114 Sokodé, Togo
J.H.W. Slingenbergh
Affiliation:
FAO, AGAH, Viale delle Terme di Caracalla, 00100 Rome, Italy
R. De Deken
Affiliation:
ITG/IMT Nationale Straat 155, 2000 Antwerp, Belgium
D.J. Rogers
Affiliation:
Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK

Abstract

A raster or grid-based Geographic Information System with data on tsetse, trypanosomiasis, animal production, agriculture and land use has recently been developed in Togo. The area-wide sampling of tsetse fly, aided by satellite imagery, is the subject of two separate papers. This paper on a first paper, published in this journal, describing the generation of digital tsetse distribution and abundance maps and how these accord with the local climatic and agro-ecological setting. Such maps when combined with data on the disease, the hosts and their owners, should contribute the knowledge of the spatial epidemiology of trypanosomiasis and assist planning of integrated control operations. Here we address the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. Different discriminant models have been applied using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration (NOAA) and Meteosat platforms. The results confirm the potential of satellite data application and multivariate for the prediction of the tsetse distribution and abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen and/or substitute one another. The analysis shows how the strategic incorporation of satellite imagery may minimize field of data. Field surveys may be modified and conducted in two stages, first concentrating on the expected fly distribution limits and thereafter on fly abundance. The study also shows that when applying satellite data, care should be taken in selecting the optimal number of predictor because this number varies with the amount of training data for predicting abundance and on the homogeneity of the distribution limits for predicting fly presence. Finally, it is suggested that in addition to the use of contemporary training data and predictor variables, training predicted data sets should refer to the same eco-geographic zone.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldry, D.A.T. & Molyneux, D.H. (1980) Observations on the ecology and trypanosome infections of a relict population of Glossina medicorum Austen in the Komoe Valley of Upper Volta. Annals of Tropical Medicine and Parasitology 74, 7991.CrossRefGoogle ScholarPubMed
Clair, M. (1987) Données récentes sur la répartition des Glossines au Niger, au Burkina Faso et en Côte d'Ivoire. pp. 345350 in International Scientific Council for Trypanosomiasis Research and Control (ISCTRC), Nineteenth Meeting, Lomé, Togo, 1987, publ. 1989. Organisation of African Unity – Scientific and Technical Research Commission (OUA-STRC), Nairobi, Kenya.Google Scholar
Cohen, J. (1960) A coefficient of agreement for nominal scale. Educational and Psychological Measurement 20, 3746.CrossRefGoogle Scholar
Congalton, R.G. (1991) A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment 37, 3546.CrossRefGoogle Scholar
de La, Rocque S. (1977) Identification des facteurs discriminants majeurs de la présence des glossines dans une zone agro-pastorale du Burkina Faso. Intérêt pour la prévision du risque trypanosomien. 212 pp. Thèse de doctorat, Université de Montpellier II Sciences et techniques du Languedoc, France.Google Scholar
De, Wispelaere G. (1994) Contribution of satellite remote sensing to the mapping of land use and of potential Glossina biotopes. In: A systematic approach to tsetse and trypanosomosis control. Proceedings of the FAO panels of experts, Rome, Italy, 1–3 December 1993. FAO Animal Production and Health Paper 121, 7489.Google Scholar
Ford, J. & Katondo, K.M. (1977) The distribution of tsetse flies in Africa in 1973. Organisation of African Unity – Scientific and Technical Research commission (OUA–STRC). London, Cook, Hammond and Kell.Google Scholar
Hair, J.F., Anderson, R.E., Tatham, R.L. & Black, W.C. (1995) Multivariate data analysis with readings. New Jersey, Prentice-Hall Inc.Google Scholar
Hendrickx, G. (1999) Georeferenced decision support methodology towards trypanosomosis management in West Africa. 176 pp. PhD thesis, State University of Ghent, Belgium.Google Scholar
Hendrickx, G., Rogers, D.J., Napala, A. & Slingenbergh, J.H.W. (1993) Predicting the distribution of riverine tsetse and the prevalence of bovine trypanosomosis in Togo using ground-based and satellite data. pp. 218232 in International Scientific Council for Trypanosomiasis Research and Control (ISCTRC), Twenty Second Meeting, Kampala, Uganda, 1993, publ. 1995. Organisation of African Unity – Scientific and Technical Research Commission (OUA–STRC), Nairobi, Kenya.Google Scholar
Hendrickx, G., Napala, A., Rogers, D.J. & Slingenbergh, J.H.W. (1996) Contribution des satellites à la lutte contre la trypanosomose animale africaine. pp. 441453 in Demarée, G., Alexandre, J. & De Dapper, M. (Eds) Proceedings of the International Conference on Tropical Climatology, Meteorology and Hydrology, Brussels, Belgium, May 22–24, 1996. publ. 1998.Google Scholar
Hendrickx, G., Slingenbergh, J., Dao, B., Bastiaensen, P. & Napala, A. (1997) Systèmes d'Information Géographique (SIG), outils puissants de prise de décision. pp. in International Scientific Council for Trypanosomiasis Research and Control (ISCTRC), Twenty Fourth Meeting, Maputo, Mozambique, 1997. Organisation of African Unity – Scientific and Technical Research Commission (OUA–STRC), Nairobi, Kenya.Google Scholar
Hendrickx, G., Napala, A., BatawuiD., De D., De, Deken, R., Vermeylen, A. & Slingenbergh, J.H.W. (1999) A systematic approach to area-wide tsetse distribution and abundance maps. Bulletin of Entomological Research 89, 231244.CrossRefGoogle Scholar
Hendrickx, G., Napala, A., Dao, B., Batawui, D., BastiaensenP., De P., De, Deken, R., Vermeylen, A., Vercruysse, J. & Slingenbergh, J.H.W. (1999) The area-wide epidemiology of bovine trypanosomosis and its impact on mixed farming in subhumid West Africa; a case study in Togo. Veterinary Parasitology 84, 1331.CrossRefGoogle ScholarPubMed
Hendrickx, G., Napala, A., SlingenberghJ.H.W., De J.H.W., De, Deken, R., Vercruysse, J. & Rogers, D.J. (2000) The spatial patterns of trypanosomosis predicted with the aid of satellite imagery. Parasitology 120, 121134.CrossRefGoogle ScholarPubMed
Hendrickx, G., Napala, A., DaoB., De B., De, Deken, R., Bastiaensen, P., Vercruysse, J. & Slingenbergh, J.H.W. (2001) Trypanosomosis control in West Africa: why, where and how? A case study in Togo. Acta Tropica, in press.Google Scholar
Kitron, U., Otieno, L.H., Hungerford, L.L., Odulaja, A., Brigham, W.U., Okello, O.O., Joselyn, M., Mohamed-Ahmed, M.M. & Cook, E. (1996) Spatial analysis of the distribution of tsetse flies in the Lambwe Valley, Kenya, using Landsat TM satellite imagery and GIS. Journal of Animal Ecology 65, 371380.CrossRefGoogle Scholar
Landis, J.R. & Koch, G.C. (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159174.CrossRefGoogle ScholarPubMed
Lark, R.M. (1994) Sample size and class variability in the choice of a method of discriminant analysis. International Journal of Remote Sensing 15, 15511555.CrossRefGoogle Scholar
Laveissière, C. & Challier, A. (1977) La répartition des glossines en Haute Volta, Cartes à 1/2.000.000. Notice Explicative N° 69. Paris: Office de la Recherche Scientifique et Technique d'Outre Mer.Google Scholar
Laveissière, C. & Challier, A. (1981) La répartition des glossines en Côte d'Ivoire, Cartes à 1/2.000.000. Notice Explicative N° 89. Paris: Office de la Recherche Scientifique et Technique d'Outre Mer.Google Scholar
Mawuena, K. & Itard, J. (1981) Présence de Glossina tachinoides Westwood, 1850 (Diptera: Glossinidae) dans le Sud du Togo. Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux 34, 4753.Google ScholarPubMed
Price, J.C. (1984) Land surface temperature measurement for the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research 89, 72317237.CrossRefGoogle Scholar
Robinson, T., Rogers, D.J. & Williams, B. (1997) Univariate analysis of tsetse habitat in the common fly belt of Southern Africa using climate and remotely sensed vegetation data. Medical and Veterinary Entomology 11, 223234.CrossRefGoogle ScholarPubMed
Robinson, T., Rogers, D.J. & Williams, B. (1997) Mapping tsetse habitat suitability in the common fly belt of Southern Africa using multivariate analysis of climate and remotely sensed vegetation data. Medical and Veterinary Entomology 11, 235245.CrossRefGoogle ScholarPubMed
Rogers, D.J. & Randolph, S.E. (1993) Distribution of tsetse and ticks in Africa, past, present and future. Parasitology Today 9, 266271.CrossRefGoogle ScholarPubMed
Rogers, D.J., Hendrickx, G. & Slingenbergh, J.H.W. (1994) Tsetse flies and their control. Revue Scientifique et Technique de l'Office International des Epizooties 13, 10751124.CrossRefGoogle ScholarPubMed
Rogers, D.J., Hay, S.I. & Packer, M.J. (1996) Predicting the distribution of tsetse flies in West Africa using temporal, Fourier processed meteorological satellite data. Annals of Tropical Medicine and Parasitology 90, 225241.CrossRefGoogle ScholarPubMed
Rogers, D.J., Hay, S.I., Wint, G.R.W. & Packer, M.J. (1997) Mapping land-cover over large areas using public domain meteorological satellite: a case study for Nigeria. International Journal of Remote Sensing 18, 32973303.CrossRefGoogle Scholar
Snijders, F.L. (1991) Rainfall monitoring based on Meteosat data – a comparison of techniques applied to the Western Sahel. International Journal of Remote Sensing 12, 13311347.CrossRefGoogle Scholar
Tucker, C.J., Vanpraet, C., Boerwinkel, E. & Gaston, A. (1983) Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sensing and Environment 13, 461474.CrossRefGoogle Scholar