Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T11:26:06.529Z Has data issue: false hasContentIssue false

A karyological study of the genus Pnigalio Schrank (Hymenoptera: Eulophidae): Assessing the taxonomic utility of chromosomes at the species level

Published online by Cambridge University Press:  08 July 2011

M. Gebiola*
Affiliation:
Dipartimento di Entomologia e Zoologia Agraria ‘F. Silvestri’, Università degli Studi di Napoli ‘Federico II’, via Università 100, 80055 Portici (NA), Italy CNR – Istituto per la Protezione delle Piante, sezione di Portici (NA), via Università 133, 80055 Portici (NA), Italy
M. Giorgini
Affiliation:
CNR – Istituto per la Protezione delle Piante, sezione di Portici (NA), via Università 133, 80055 Portici (NA), Italy
P. Navone
Affiliation:
Di.Va.P.R.A. Entomologia e Zoologia applicate all'Ambiente ‘Carlo Vidano’, Università degli Studi di Torino, Via L. da Vinci 44, 10095 Grugliasco (TO), Italy
U. Bernardo
Affiliation:
CNR – Istituto per la Protezione delle Piante, sezione di Portici (NA), via Università 133, 80055 Portici (NA), Italy
*
*Author for correspondence Fax: +0817755872 E-mail: [email protected]

Abstract

We provide a karyological study of 12 species of the genus Pnigalio in an attempt to evaluate the taxonomic utility of karyotypes at the species level. For all species of Pnigalio examined the number of chromosome was 2n=12. Karyotype formulae presented mainly metacentric and submetacentric chromosomes, although a pair of acrocentrics or subtelocentrics, shorter than biarmed chromosomes, was present in some species. The analysis of karyotypes of Pnigalio showed frequent but not general interspecific variability of the chromosome traits. Although most of the studied species revealed concordance between morphological and karyological characters (centromeric index and relative length), two other categories have been identified: morphologically distinct species without reciprocal differences in karyotype structure, and morphologically similar species that strongly differ in chromosomal characters.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Askew, R.R. (1984) Species of Pnigalio and Chrysocharis (Hymenoptera: Eulophidae) parasitic on Tischeriidae (Lepidoptera), with the description of a new species. Entomologist's Gazette 35, 103109.Google Scholar
Baldanza, F. & Giorgini, M. (2001) Karyotype and NOR localization differences between Encarsia formosa Gahan and Encarsia luteola Howard (Hymenoptera: Aphelinidae). Bollettino del Laboratorio di Entomologia agraria ‘Filippo Silvestri’ 56, 3341.Google Scholar
Baldanza, F., Gaudio, L. & Viggiani, G. (1999) Cytotaxonomic studies of Encarsia Förster (Hymenoptera: Aphelinidae). Bulletin of Entomological Research 89, 209215.CrossRefGoogle Scholar
Barth, A., Fernandes, A., das Graças Pompolo, S. & Costa, M.A. (2011) Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): A new contribution to the cytotaxonomy of the genus. Genetics and Molecular Biology 34, 7779.CrossRefGoogle Scholar
Bernardo, U., Pedata, P.A. & Viggiani, G. (2007) Phenotypic plasticity of pigmentation and morphometrical traits in Pnigalio soemius (Walker) (Hymenoptera: Eulophidae). Bulletin of Entomological Research 97, 101109.CrossRefGoogle ScholarPubMed
Bernardo, U., Monti, M.M., Nappo, A.G., Gebiola, M., Russo, A., Pedata, P.A. & Viggiani, G. (2008) Species status of two populations of Pnigalio soemius (Hymenoptera: Eulophidae) reared from two different hosts: An integrative approach. Biological Control 46, 293303.CrossRefGoogle Scholar
Camacho, J.P.M., Sharbel, T.F. & Beukeboom, L.W. (2000) B-chromosome evolution. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 355, 163178.Google Scholar
Crozier, R.H. (1975) Animal Cytogenetics. vol. 3, part 7. Berlin-Stuttgart, Germany, Gebrüder Borntraeger.Google Scholar
Gebiola, M. & Bernardo, U. (2008) Karyotype of Baryscapus silvestrii Viggiani et Bernardo (Hymenoptera: Eulophidae). Bollettino del Laboratorio di Entomologia Agraria ‘Filippo Silvestri’ 62, 3943.Google Scholar
Gebiola, M., Bernardo, U., Monti, M.M., Nappo, A.G., Navone, P. & Heraty, J.M. (2007) Polyphagous species or cryptic species complexes of host-specific and oligophagous populations? A case study: Pnigalio soemius. p. 70 in Proceedings of the X European Workshop on Insect parasitoids. 1721 September 2007, Erice (Sicily), Italy.Google Scholar
Gebiola, M., Bernardo, U., Monti, M.M., Navone, P. & Viggiani, G. (2009) Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière & Delucchi (Hymenoptera: Eulophidae): two closely related valid species. Journal of Natural History 43, 24652480.CrossRefGoogle Scholar
Gebiola, M., Bernardo, U. & Burks, R.A. (2010) A reevaluation of the generic limits of Pnigalio Schrank (Hymenoptera: Eulophidae) based on molecular and morphological evidence. Zootaxa 2484, 3544.CrossRefGoogle Scholar
Giorgini, M. & Baldanza, F. (2004) Species status of two populations of Encarsia sophia (Girault and Dodd) (Hymenoptera: Aphelinidae) native to different geographic areas. Biological Control 30, 2535.Google Scholar
Giorgini, M., Bernardo, U., Monti, M.M., Nappo, A.G. & Gebiola, M. (2010) Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Applied and Environmental Microbiology 76, 25892599.CrossRefGoogle ScholarPubMed
Gokhman, V.E. (2002) Chromosomes of parasitic wasps of the family Eulophidae (Hymenoptera). Entomological Review 82, 476480.Google Scholar
Gokhman, V.E. (2004) Karyotypes of parasitic wasps of the family Eulophidae (Hymenoptera): new data and review. Russian Entomological Journal 13, 171174.Google Scholar
Gokhman, V.E. (2006) Karyotypes of parasitic Hymenoptera: diversity, evolution and taxonomic significance. Insect Science 13, 237241.CrossRefGoogle Scholar
Gokhman, V.E. (2009) Karyotypes of parasitic Hymenoptera. Dordrecht, Netherlands, Springer.Google Scholar
Gokhman, V.E. & Quicke, D.L.J. (1995) The last twenty years of parasitic Hymenoptera karyology: An update and phylogenetic implications. Journal of Hymenoptera Research 4, 4163.Google Scholar
Goodpasture, C. & Grissell, B.E. (1975) A karyological study of nine species of Torymus (Hymenoptera: Torymidae). Canadian Journal of Genetics and Cytology 17, 413422.Google Scholar
Heraty, J. (2004) Molecular systematics, Chalcidoidea and biological control. pp. 3971in Ehler, R. & Mateille, T. (Eds) Genetics, Evolution and Biological Control. Wallingford, UK, CAB International.Google Scholar
Imai, H.T., Taylor, R.W., Crosland, M.J. & Crozier, R.H. (1988) Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Japanese Journal of Genetics 63, 159185.Google Scholar
Insua, A., López-Piñón, M.J., Freire, R. & Méndez, J. (2006) Karyotype and chromosomal location of the 18S–28S and 5S ribosomal DNA in the scallops Pecten maximus and Mimachlamys varia (Bivalvia: Pectinidae). Genetica 126, 291301.CrossRefGoogle ScholarPubMed
Levan, A., Fredga, K. & Sandberg, A.A. (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52, 201220.CrossRefGoogle Scholar
Maffei, E.M.D., Pompolo, S.G., Sila-Junior, J. & Caixeiro, A.P.A. (2001) Silver staining of nucleolar organizer regions (NOR) in some species of Hymenoptera (bees and parasitic wasp) and Coleoptera (lady-beetle). Cytobios 104, 119125.Google Scholar
Monti, M.M., Nappo, A.G. & Giorgini, M. (2005) Molecular characterization of closely related species in the parasitic genus Encarsia (Hymenoptera: Aphelinidae) based on the mitochondrial cytochrome oxidase subunit I gene. Bulletin of Entomological Research 95, 401408.CrossRefGoogle ScholarPubMed
Noyes, J. (2010) Universal Chalcidoidea Database. The Natural History Museum, London. UK. Available online at http://www.nhm.ac.uk/entomology/chalcidoids/index.html.Google Scholar
Stouthamer, R., Van Tilborg, M., de Jong, J.H., Nunney, L. & Luck, R.F. (2001) Selfish element maintains sex in natural populations of a parasitoid wasp. Proceedings of the Royal Society of London, Series B: Biological Sciences 268, 617622.CrossRefGoogle ScholarPubMed
Sumner, A.T. (2003) Chromosomes: Organization and Function. Oxford, UK, Blackwell Publishing.Google Scholar
Van Vugt, J.J.F.A., De Jong, J.H. & Stouthamer, R. (2009) The origin of a selfish B chromosome triggering paternal sex ratio in the parasitoid wasp Trichogramma kaykai. Proceedings of the Royal Society of London, Series B: Biological Sciences 276, 41494154.Google ScholarPubMed
Werren, J.H. (1991) The paternal-sex-ratio chromosome of Nasonia. American Naturalist 137, 392402.CrossRefGoogle Scholar