Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T05:42:30.151Z Has data issue: false hasContentIssue false

Genetic factors controlling flight performance and migration in the African armyworm moth, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  10 July 2009

W. E. Parker
Affiliation:
School of Animal Biology, University College of North Wales, Bangor, Gwynedd, LL57 2UW, UK
A. G. Gatehouse
Affiliation:
School of Animal Biology, University College of North Wales, Bangor, Gwynedd, LL57 2UW, UK

Abstract

The existence of a genetic component in the determination of flight capacity suggested by the results of previous experiments on the effects of environmental factors on flight performance in Spodoptera exempta (Walker) was confirmed by successful selection for and against the capacity for prolonged flight. The results of selection experiments were consistent with those expected when a polygenic character is subjected to directional selection. Heritability estimates for flight duration were 0·4 for overall heritability (mean offspring on mid parent regression) and 0·5–0·9 for single sex offspring on female and male parent regressions, demonstrating that flight capacity has a substantial additive genetic component. Although there can be no doubt that genetic factors play a major role in the control of migration in S. exempta, it is not yet clear whether flight capacity is a continuously varying character or whether discontinuous variation in the form of a genetically controlled flight polymorphism is involved. It is suggested that the life-history strategy of S. exempta is adapted to maximise dispersal in the rains when a massive extension of favourable habitat occurs, and to maintain populations in those habitats which remain favourable in the dry season. The present evidence suggests that this strategy is achieved by cyclic selection of genetically determined variability in potential flight capacity.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blair, B. W. (1978). Flight activity of Agrotis segetum (Denis & Schiff.) and A. ipsilon Hüfn. (Lepidoptera: Noctuidae).—J. ent. Soc. sth. Afr. 41, 241245.Google Scholar
Blair, B. W., Rose, D. J. W. & Law, A. B. (1980). Synoptic weather associated with outbreaks of African armyworm, Spodoptera exempta (Walker) (Lepidoptera, Noctuidae), in Zimbabwe during 1973 and 1976/77.—Zimbabwe J. agric. Res. 18, 95110.Google Scholar
Brown, E. S., Betts, E. & Rainey, R. C. (1969). Seasonal changes in distribution of the African armyworm, Spodoptera exempta (Wlk.) (Lep., Noctuidae), with special reference to eastern Africa.—Bull. ent. Res. 58, 661728.CrossRefGoogle Scholar
Brown, E. S. & Dewhurst, C. F. (1975). The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East.—Bull. ent. Res. 65, 221262.CrossRefGoogle Scholar
Caldwell, R. L. & Hegmann, J. P. (1969). Heritability of flight duration in the milkweed bug Lygaeus kalmii.—Nature, Lond. 223, 9192.CrossRefGoogle Scholar
Carter, A. (1976). Wing polymorphism in the insect species Agonum retractum Leconte (Coleoptera: Carabidae).—Can. J. Zool. 54, 13751382.CrossRefGoogle Scholar
Davis, M. A. (1980). Variation in flight duration among individual Tetraopes beetles: implications for studies of insect flight.—J. Insect Physiol. 26, 403406.CrossRefGoogle Scholar
Derr, J. A. (1980). The nature of variation in life history characters of Dysdercus bimaculatus (Heteroptera: Pyrrhocoridae), a colonizing species.—Evolution 34, 548557.CrossRefGoogle Scholar
Dingle, H. (1966). Some factors affecting flight activity in individual milkweed bugs (Oncopeltus).—J. exp. Biol. 44, 335343.CrossRefGoogle Scholar
Dingle, H. (1968). The influence of environment and heredity on flight activity in the milkweed bug Oncopeltus.—J. exp. Biol. 48, 175184.CrossRefGoogle Scholar
Dingle, H. (1980). Ecology and evolution of migration.—pp. 2101in Gauthereaux, S.A. (Ed.). Animal migration, orientation and navigation387 pp New York, London, Academic Press.Google Scholar
Dingle, H. (1982). Function of migration in the seasonal synchronization of insects.—Entomologia exp. appl. 31, 3648.CrossRefGoogle Scholar
Dingle, H., Brown, C. K. & Hegmann, J. P. (1977). The nature of genetic variance influencing photoperiodic diapause in a migrant insect, Oncopeltus fasciatus.—Am. Nat. 111, 10471059.CrossRefGoogle Scholar
Falconer, D. S. (1981). Introduction to quantitative genetics.—2nd edn, 340 pp. London, Longmans.Google Scholar
Faure, J. C. (1943). Phase variation in the army worm, Laphygma exempta (Walk.).—Sci. Bull. Dep. Agric. For. Un. S. Afr. no. 234, 17 pp.Google Scholar
Gatehouse, A. G. & Hackett, D. S. (1980). A technique for studying flight behaviour of tethered Spodoptera exempta moths.—Physiol. Entomol. 5, 215222.CrossRefGoogle Scholar
Gilbert, L. E. & Singer, M. C. (1973). Dispersal and gene flow in a butterfly species.—Am. Nat. 107, 5872.CrossRefGoogle Scholar
Gunn, A. & Gatehouse, A. G. (1985). Effects of larval and adult food and water uptake on reproduction in the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae).—Physiol. Entomol. 10.CrossRefGoogle Scholar
Haggis, M. J. (1984). Distribution, frequency of attack and seasonal incidence of the African armyworm Spodoptera exempta (Walk.) (Lep.: Noctuidae) with particular reference to Africa and southwestern Arabia.—Report, Tropical Development & Research institute no. L69, 116 pp.Google Scholar
Harrison, R. G. (1979). Flight polymorphism in the field cricket, Gryllus pennsylvanicus.—Oecologia 40, 125132.CrossRefGoogle Scholar
Harrison, R. G. (1980). Dispersal polymorphisms in insects.—Annu. Rev. Ecol. & Syst. 11, 95118.CrossRefGoogle Scholar
Hegmann, J. P. & Dingle, H. (1982). Phenotypic and genetic co-variance structure in milkweed bug life-history traits.—pp. 177185in Dingle, H. & Hegmann, J. P. (Eds.). Evolution and genetics of life-histories256 pp New York, Springer-Verlag.Google Scholar
Hoffman, R. J. (1978). Environmental uncertainty and evolution of physiological adaptation in Colias butterflies.—Am. Nat. 112, 9991015.CrossRefGoogle Scholar
Jackson, D. J. (1928). The inheritance of long and short wings in the weevil (Sitona hispidula), with a discussion of wing reduction among beetles.—Trans. R. Soc. Edinb. 55, 665735.CrossRefGoogle Scholar
Kettlewell, H. B. D. (1952). A possible genetic explanation and understanding of migration of continuous brooded insect.—Nature, Lond. 169, 832833.CrossRefGoogle Scholar
Macaulay, E. D. M. (1974). Lipid storage in the pre-imago and young adult Plusia gamma.—Entomologia exp. appl. 17, 5360.CrossRefGoogle Scholar
Parker, W. E. (1983). An experimental study on the migration of the African armyworm moth, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae).—211 pp. Ph.D. thesis, Univ. Wales.Google Scholar
Parker, W. E. & Gatehouse, A. G. (1985). The effect of larval rearing conditions on flight performance in females of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae).—Bull. ent. Res. 75, 3547.CrossRefGoogle Scholar
Pedgley, D. E., Reynolds, D. R., Riley, J. R. & Tucker, M. R. (1982). Flying insects reveal small-scale wind system.—Weather, Lond. 37, 295306.CrossRefGoogle Scholar
Persson, B. (1981). Population fluctuations of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae), in outdoor cages in Kenya.—Bull. ent. Res. 71, 289297.CrossRefGoogle Scholar
Rainey, R. C. & Betts, E. (1979). Continuity in major populations of migrant pests: the desert locust and the African armyworm.—Phil. Trans. R. Soc. (B) 287, 359374.Google Scholar
Rankin, M. A. (1978). Hormonal control of insect migratory behaviour.—pp. 532in Dingle, H. (Ed.). Evolution of insect migration and diapause284 pp New York, Springer-Verlag.CrossRefGoogle Scholar
Riley, J. R., Reynolds, D. R. & Farmery, M. J. (1983). Observations of the flight behaviour of the armyworm moth, Spodoptera exempta, at an emergence site using radar and infra-red optical techniques.—Ecol. Entomol. 8, 395418.CrossRefGoogle Scholar
Rose, D. J. W. (1972). Dispersal and quality in populations of Cicadulina species (Cicadellidae).—J. Anim. Ecol. 41, 589609.CrossRefGoogle Scholar
Rose, D. J. W. (1979). The significance of low-density populations of the African armyworm Spodoptera exempta (Walk.).—Phil. Trans. R. Soc. (B) 287, 393402.Google Scholar
Rose, D. J. W. & Dewhurst, C. F. (1979).The African armyworm, Spodoptera exempta—congregation of moths in trees before flight.—Entomologia exp. appl. 26, 346348.CrossRefGoogle Scholar
Solbreck, C. (1980). Dispersal distances of migrating pine weevils, Hylobius abietis, Coleoptera: Curculionidae.—Entomologia exp. appl. 28, 123131.CrossRefGoogle Scholar
Tucker, M. R., Mwandoto, S. & Pedgley, D. E. (1982). Further evidence for windborne movement of armyworm moths, Spodoptera exempta, in East Africa.—Ecol. Entomol. 7, 463473.CrossRefGoogle Scholar
Utida, S. (1970). Secular change of percent emergence of the flight form in the population of southern cowpea weevil, Callosobruchus maculatus [in Japanese].—Jap. J. appl. Ent. Zool. 14, 7178. (Seen in Rev. appl. Ent. (A) (1972) 60, abstr. 697).CrossRefGoogle Scholar
Vepsäläinen, K. (1978). Wing dimorphism and diapause in Gerris: determination and adaptive significance.—pp. 218253in Dingle, H. (Ed.). Evolution of insect migration and diapause284 pp New York, Springer-Verlag.CrossRefGoogle Scholar
Wellington, W. G. (1964). Qualitative changes in populations in unstable environments.—Can. Ent. 96, 436451.CrossRefGoogle Scholar
Zera, A. J., Innes, D. J. & Saks, M. E. (1983). Genetic and environmental determinants of wing polymorphism in the waterstrider Limnoporus canaliculatus.—Evolution 37, 513522.CrossRefGoogle Scholar