Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T17:26:01.308Z Has data issue: false hasContentIssue false

Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?

Published online by Cambridge University Press:  01 December 2014

G. Parmain*
Affiliation:
National Research Institute of Science and Technology for Environment and Agriculture. (IRSTEA), ‘Forest ecosystems’ Research Unit, Domaine des Barres, F-45290 Nogent-sur-Vernisson, France National Laboratory of Forest Entomology, National Forest Office (ONF), F-11500 Quillan, France National Museum of Natural History, Natural Patrimony Department, 36 rue Geoffroy St Hilaire, CP 41 75 231 Paris cedex 05, France
C. Bouget
Affiliation:
National Research Institute of Science and Technology for Environment and Agriculture. (IRSTEA), ‘Forest ecosystems’ Research Unit, Domaine des Barres, F-45290 Nogent-sur-Vernisson, France
J. Müller
Affiliation:
Nationalparkverwaltung Bayerischer Wald Stellvertretender Leiter Sachgebietsleiter Naturschutz und ForschungFreyunger Str. 2, 94481 Grafenau, Germany
J. Horak
Affiliation:
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 1176, CZ-165 21 Prague, Czech Republic
M.M. Gossner
Affiliation:
Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising-Weihenstephan, Germany
T. Lachat
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
G. Isacsson
Affiliation:
Swedish Forest Agency, P.O. Box 63, SE-281 21 Hässleholm, Sweden
*
*Author for correspondence Phone: 00.33.2.38.95.66.78 Fax: 00.33.2.38.95.03.59 E-mail: [email protected]

Abstract

Monitoring saproxylic beetle diversity, though challenging, can help identifying relevant conservation sites or key drivers of forest biodiversity, and assessing the impact of forestry practices on biodiversity. Unfortunately, monitoring species assemblages is costly, mainly due to the time spent on identification. Excluding families which are rich in specimens and species but are difficult to identify is a frequent procedure used in ecological entomology to reduce the identification cost. The Staphylinidae (rove beetle) family is both one of the most frequently excluded and one of the most species-rich saproxylic beetle families. Using a large-scale beetle and environmental dataset from 238 beech stands across Europe, we evaluated the effects of staphylinid exclusion on results in ecological forest studies. Simplified staphylinid-excluded assemblages were found to be relevant surrogates for whole assemblages. The species richness and composition of saproxylic beetle assemblages both with and without staphylinids responded congruently to landscape, climatic and stand gradients, even when the assemblages included a high proportion of staphylinid species. At both local and regional scales, the species richness as well as the species composition of staphylinid-included and staphylinid-excluded assemblages were highly positively correlated. Ranking of sites according to their biodiversity level, which either included or excluded Staphylinidae in species richness, also gave congruent results. From our results, species assemblages omitting staphylinids can be taken as efficient surrogates for complete assemblages in large scale biodiversity monitoring studies.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alinvi, O., Ball, J., Danell, K., Hjältén, J. & Pettersson, R. (2007) Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. Journal of Insect Conservation 11, 99112.CrossRefGoogle Scholar
Anderson, M.J. & Willis, T.J. (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511525.CrossRefGoogle Scholar
Assing, V. & Schülke, M. (eds) (2011) Die Käfer Mitteleuropas. Band 4. Staphylinidae I. Zweite Neubearbeitete Auflage. Heidelberg, Spektrum Akademischer Verlag, I-XII, pp. 1560.Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2014) Lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0–6. Available online at http://CRAN.R-project.org/package=lme4 Google Scholar
Beattie, A.J. & Olivier, I. (1994) Taxonomic minimalism. Trends in Ecology and Evolution 9, 488490.CrossRefGoogle Scholar
Bohac, J. (1999) Staphylinid beetles as bioindicators. Agriculture, Ecosystems and Environment 74, 357372.CrossRefGoogle Scholar
Bouget, C., Brustel, H. & Zagatti, P. (2008) The French Information System on Saproxylic BEetle Ecology (FRISBEE): an ecological and taxonomical database to help with the assessment of forest conservation status. Revue Ecologie (Terre et Vie) 63, 2528.Google Scholar
Bouget, C., Larrieu, L. & Brin, A. (2014) Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecological Indicators 36, 656664.CrossRefGoogle Scholar
Brunke, A., Klimaszewski, J. & Anderson, R.S. (2012) Present taxonomic work on Staphylinidae (Coleoptera) in Canada: progress against all odds. ZooKeys 186, 15.CrossRefGoogle Scholar
Buse, A. & Good, J.E.G. (1993) The effects of conifer forest design and management on abundance and diversity of rove beetles (Coleoptera: Staphylinidae): implications for conservation. Biological Conservation 64, 6776.CrossRefGoogle Scholar
Carnus, J.M., Parrotta, J., Brockerhoff, E., Arbez, M., Jactel, H., Kremer, A. & Walters, B. (2006) Planted forests and biodiversity. Journal of Forestry 104, 6577.Google Scholar
Davies, Z.G., Tyler, C., Stewart, G.B. & Pullin, A.S. (2008) Are current management recommendations for saproxylic invertebrates effective? A systematic review. Biodiversity and Conservation 17, 209234.CrossRefGoogle Scholar
Derraik, J.G.B., Closs, G.P., Dickinson, K.J.M., Sirvid, P., Barratt, B.I.P. & Patrick, B.H. (2002) Arthropod morphospecies versus taxonomic species: a case study with araneae, coleoptera, and lepidoptera. Conservation Biology 16, 10151023.CrossRefGoogle Scholar
Gossner, M.M., Lachat, T., Brunet, J., Isacsoon, G., Bouget, C., Brustel, H., Brandl, R., Weisser, W.W. & Müller, J. (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology 27, 605614.CrossRefGoogle ScholarPubMed
Grove, S.J. (2002) The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest. Biological Conservation 104, 149171.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Horák, J., Chobot, K., Gabriš, R., Jelínek, J., Konvička, O., Krejčík, S. & Sabol, O. (2011) Uphill distributional shift of endangered habitat specialist. Journal of Insect Conservation 15, 743746.CrossRefGoogle Scholar
Kennedy, A.D. & Jacoby, C.A. (1997) Biological indicators of marine environmental health: Meiofauna – A neglected benthic component? Environmental Monitoring and Assessment 54, 4768.CrossRefGoogle Scholar
Kim, K.C. & Byrne, L.B. (2006) Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science. Ecological Researches 21, 794810.CrossRefGoogle Scholar
Köhler, F. (2010) Die klimabedingte Veränderung der Totholzkäferfauna (Coleoptera) des nördlichen Rheinlandes – Analysen zur Gesamtfauna und am Beispiel von Wiederholungsuntersuchungen in ausgewählten Naturwaldzellen. Arnberg, Germany, Landesbetrieb Wald und Holz NRW.Google Scholar
Lachat, T., Wermelinger, B., Gossner, M.M., Bussler, H., Isacsson, G. & Müller, J. (2012) Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecological Indicators 23, 323331.CrossRefGoogle Scholar
Langor, D.W., Spence, J.R., Hammond, H.E., James, J.J. & Cobb, T.P. (2006) Maintaining Saproxylic insects in Canada's extensively managed boreal forests: a review. pp. 109 in Grove, S.J. & Hanula, J.L. (Eds), Insect Biodiversity and Dead Wood: Proceedings of a Symposium for the 22nd International Congress of Entomology. Gen. Tech. Rep. SRS–93. Asheville, NC, U.S. Department of Agriculture, Forest Service, Southern Research Station.Google Scholar
Löbl, I. & Smetana, A. (2004) Catalog of the Palaearctic Coleoptera, Volume 2 – Hydrophiloidea, Histeroidea, Staphylinoidea, pp. 942 Stenstrup, Apollo Books.CrossRefGoogle Scholar
Lohse, G.A. (1964) Staphylinidae I. (Micropeplinae bis Tachyporinae). pp 364 in Freude, H., Harde, W., Lohse, G.A. (Eds), Die Kafer Mitteleuropas. Krefeld, Goecke and Evers.Google Scholar
Lohse, G.A., Benick, G. & Likovsky, Z. (1974) Staphylinidae II. (Hypocyphtinae bis Aleocharinae). pp. 304 in Freude, H., Harde, W. & Lohse, G.A. (Eds), Die Kafer Mitteleuropas. Krefeld, Goecke and Evers.Google Scholar
Müller, J. & Brandl, R. (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology 46, 897905.CrossRefGoogle Scholar
Müller, J. & Gossner, M. (2010) Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biological Conservation 143, 625633.CrossRefGoogle Scholar
Müller, J., Brunet, J., Brin, A., Bouget, C., Brustel, H., Bussler, H., Förster, B., Isacsson, G., Köhler, F., Lachat, T. & Gossner, M.M. (2013) Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of European Beech forests. Insect Conservation and Diversity 6, 162169.CrossRefGoogle Scholar
Müller, J., Bussler, H. & Kneib, T. (2008) Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. Journal of Insect Conservation 12, 107124.CrossRefGoogle Scholar
Nieto, A. & Alexander, K.N.A. (2010) European Red List of Saproxylic Beetles, p. 56. Luxembourg, Publications Office of the European Union.Google Scholar
Obrist, M.K. & Duelli, P. (2010) Rapid biodiversity assessment of arthropods for monitoring average local species richness and related ecosystem services. Biodiversity and Conservation 19, 22012220.CrossRefGoogle Scholar
Ohsawa, M. (2007) The role of isolated old oak trees in maintaining beetle diversity within larch plantations in the central mountainous region of Japan. Forest Ecology and Management 250, 215226.CrossRefGoogle Scholar
Olivier, I. & Beattie, A.J. (1996) Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology 10, 99109.CrossRefGoogle Scholar
Parmain, G., Dufrêne, M., Brin, A. & Bouget, C. (2013) Influence of sampling effort on saproxylic beetle diversity assessment: implications for insect monitoring studies in European temperate forests. Agricultural and Forest Entomology 15, 135145.CrossRefGoogle Scholar
R Core Team. (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at URL http://www.R-project.org/.Google Scholar
Schmidl, J. & Bussler, H. (2004) Ökologische Gilden xylobionter Käfer Deutschlands und ihr Einsatz in der landschaftsökologischen Praxis – ein Bearbeitungsstandard. Naturschutz und Landschaftsplanung 36, 202218.Google Scholar
Sebek, P., Barnouin, T., Brin, A., Brustel, H., Dufrêne, M., Gosselin, F., Meriguet, B., Micas, L., Noblecourt, T., Rose, O., Velle, L. & Bouget, C. (2012) A test for assessment of saproxylic beetle biodiversity using subsets of “monitoring species”. Ecological Indicators 20, 304315.CrossRefGoogle Scholar
Siitonen, J. (2001) Forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example. Ecological Bulletins 49, 1141.Google Scholar
Siitonen, J. & Saaristo, L. (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biological conservation 94, 211220.CrossRefGoogle Scholar
Stokland, J.N. & Meyke, E. (2008) The Nordic saproxylic database: an emerging overview of the biological diversity in dead wood. Revue d’Écologie (Terre Vie) 63, 2940.Google Scholar
Stokland, J., Tomter, S. & Söderberg, U. (2004) Development of dead wood indicators for biodiversity monitoring: experiences from Scandinavia. pp. 207226 in Marchetti, M. (Ed.) Monitoring and Indicators of Forest Biodiversity in Europe – From Ideas to Operationality, Vol. 51. EFI workshop, November 12th–15th 2003, Firenze, Italy.Google Scholar
Terlizzi, A., Bevilacqua, S., Fraschetti, S. & Boreo, F. (2003) Taxonomic sufficiency and the increasing insufficiency of taxonomic expertise. Marine Pollution Bulletin 46, 556561.CrossRefGoogle ScholarPubMed
Timonen, J., Siitonen, J., Gustafsson, L., Kotiaho, J.S., Stokland, J.N., Svedrup-Thygeson, A. & Mönkkönen, M. (2010) Woodland key habitats in northern Europe: concepts, inventory and protection. Scandinavian Journal of Forest Research 25, 309324.CrossRefGoogle Scholar
Williams, P.H. & Gaston, K.J. (1994) Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation 67, 211217.CrossRefGoogle Scholar
Supplementary material: File

Parmain Supplementary Material

Tables S1-S5 and Figure S1

Download Parmain Supplementary Material(File)
File 103.9 KB