Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T01:24:27.220Z Has data issue: false hasContentIssue false

The retention and metabolism of Nτ-methylhistidine by cockerels: implications for the measurement of muscle protein breakdown determined from the excretion of Nτmethylhistidine in excreta

Published online by Cambridge University Press:  09 March 2007

C. I. Harris
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
G. Milne
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Ruth McDiarmid
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Excreta were collected for four consecutive days from 4- to 18-week-old cockerels following subcutaneous injection of Nτ-[14CH3]methylhistidine.

2. The recoveries of radioactivity in excreta were incomplete and progressively decreased with increasing age.

3. Most of the radioactivity not recovered in excreta after 4 d was found in skeletal muscle where > 55% of the radioactivity present was in the Nτ-methylhistidine-containing dipeptide, balenine.

4. This peptide appeared to be relatively stable so that most of the labelled Nτ-methylhistidine incorporated was not released during the period of the recovery measurements.

5. The total pool of non-protein bound Nτ-methylhistidine (free Nτ-methylhistidine+balenine) in pectoral and mixed thigh muscles increased with age and relative to the daily excretion of Nτ-methylhistidine. At 18 weeks the pool was 3.3 times the daily excretion of Nτ-methylhistidine.

6. These observations account for the decreasing recoveries of radioactivity in excreta described previously, due to progressive dilution of labelled Nτ-methylhistidine in an expanding pool of non-protein-bound Nτ-methylhistidine, part of which was relatively stable.

7. It is concluded that excretion of Nτ-methylhistidine by 4- to 18-week-old cockerels cannot be used as a reliable index of muscle protein breakdown in vivo.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Aberle, E. D. & Stewart, T. S. (1983) Growth 47 135144.Google ScholarPubMed
Akester, A. R., Anderson, R. S., Hill, K. J. & Osbaldiston, G. W. (1967). British Poultry Science 8, 209215.CrossRefGoogle Scholar
Cowgill, R. W. & Freeburg, B. (1957). Archives of Biochemistry and Biophysics 71, 466472.CrossRefGoogle Scholar
Fisher, H., Konlande, J. & Strumeyer, D. (1975). Nutrition and Metabolism 18, 120ndash;126.Google Scholar
Fowler, V. R. (1980). In Growth in Animals: Studies in the Agricultural and Food Sciences, pp. 249263. [Lawrence, T.L.J., editor]. London: Butterworths.CrossRefGoogle Scholar
Harris, C. I. & Milne, G. (1980). British Journal of Nutrition 44, 129140.CrossRefGoogle Scholar
Harris, C. I. & Milne, G. (1981 a). Biochemical Society Transactions 9, 315P.CrossRefGoogle Scholar
Harris, C. I. & Milne, G. (1981 b). British Journal of Nutrition 45, 423429.CrossRefGoogle Scholar
Harris, C. I. & Milne, G. (1981 c). British Journal of Nutrition 45, 411422.CrossRefGoogle Scholar
Harris, C. I., Milne, G. & McDiarmid, R. (1983 a). Proceedings of the Nutrition Society 42, 129A.Google Scholar
Harris, C. I., Milne, G. & Mcdiarmid, R. (1983 b). In 4th International Symposium on Protein Metabolism and Nutrition, vol. 2, pp. 6164. Paris: INRA.Google Scholar
Harris, C. I., Rucklidge, G. J., McDiarmid, R. & Milne, G. (1986). Biochemical Journal 239, 229232.CrossRefGoogle Scholar
Haverberg, L. N., Deckelbaum, L., Bilmazes, C., Munro, H. N. & Young, V. R. (1975). Biochemical Journal 152, 503510.CrossRefGoogle Scholar
Haverberg, L. N., Munro, H. N. & Young, V. R. (1974). Biochimica et Biophysica Acta 371, 226237.CrossRefGoogle Scholar
Hayashi, K., Tomita, Y., Maeda, Y., Shinagawa, Y., Inoue, K. & Hashizume, T. (1985). British Journal of Nutrition 54, 157163.CrossRefGoogle Scholar
Hillgartner, F. B., Williams, A. S., Flanders, J. A., Morin, D. & Hansen, R. J. (1981). Biochemical Journal 196, 591601.CrossRefGoogle Scholar
Latimer, H. B. (1925). Anatomical Record 31, 233253.CrossRefGoogle Scholar
MacDonald, M. L. & Swick, R. W. (1981). Biochemical Journal 194, 811819.CrossRefGoogle Scholar
Maruyama, K., Sunde, M. L. & Swick, R. W. (1978). Biochemical Journal 176, 573582.CrossRefGoogle Scholar
Muramatsu, I., Salter, D. N. & Coates, M. E. (1985). British Journal of Nutrition 54, 131145.CrossRefGoogle Scholar
Ng, R. H. & Marshall, F. D. (1976). Comparative Biochemistry and Physiology 54B, 519521.Google Scholar
Olson, C. & Mann, F. C. (1935). Journal of the American Veterinary and Medical Association 87, 151159.Google Scholar
Richardson, L. R., Cannon, M. L. & Webb, B. D (1965). Poultry Science 44, 248257.CrossRefGoogle Scholar
Saunderson, C. L. & Leslie, S. (1983). British Journal of Nutrition 50, 691700.CrossRefGoogle Scholar
Skadhauge, E. (1968). Comparative Biochemistry and Physiology 24, 718.CrossRefGoogle Scholar
Tamaki, N., Morioka, S., Ikeda, T., Harada, M. & Hama, T. (1980). Journal of Nutritional Science and Vitaminology 26, 127139.CrossRefGoogle Scholar
Tomas, F. M., Ballard, F. J. & Pope, L. M. (1979). Clinical Science 56, 341346.CrossRefGoogle Scholar
Van Balgooy, J. N. A., Marshall, F. D. & Roberts, E. (1974). Nature 247, 226227.CrossRefGoogle Scholar
Wilson, P. N. (1953). Journal of Agricultural Science, Cambridge 44, 6785.CrossRefGoogle Scholar