Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T17:16:56.825Z Has data issue: false hasContentIssue false

Rapeseed glucosinolates and iodine in sows affect the milk iodine concentration and the iodine status of piglets*

Published online by Cambridge University Press:  09 March 2007

Friedrich Schöne*
Affiliation:
Agricultural Institution of Thuringia (Jena), D-07743 Jena, Naumburger Straße 98, Germany
Matthias Leiterer
Affiliation:
Agricultural Institution of Thuringia (Jena), D-07743 Jena, Naumburger Straße 98, Germany
Horst Hartung
Affiliation:
Agricultural Institution of Thuringia (Jena), D-07743 Jena, Naumburger Straße 98, Germany
Gerhard Jahreis
Affiliation:
Friedrich-Schiller-University (Jena), Institute of Nutrition, D-07743 Jena, Dornburger Straße 24, Germany
Frank Tischendorf
Affiliation:
Friedrich-Schiller-University (Jena), Institute of Nutrition, D-07743 Jena, Dornburger Straße 24, Germany
*
Corresponding author: Dr Friedrich Schöne, fax +49 3641 463 630, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I in the chain sow diet → blood serum of sow → sow milk → piglet serum was investigated in two experiments with a total of eighty-one sows and their piglets. In experiments conducted during the last trimester of gravidity and the 28 d of lactation, diets with glucosinolates (1.9 mmol/kg diet via 100 g ground rapeseed/kg diet (Expt 1) and 2.1 and 4.2 mmol/kg diet via 75 and 150 g rapeseed press cake/kg diet (Expt 2)) were compared with control groups without rapeseed products. From 0 to 600 μg I/kg was added to sow diets during lactation. Diets without supplementary I decreased the I concentration particularly in milk and piglet serum. The presence of rapeseed and rapeseed press cake were indicated by a thiocyanate concentration increase, mainly in sow serum. The diets with glucosinolates decreased the milk and piglet serum I concentration. Spot urine and faeces samples from sows eating the rapeseed-press cake diets had increased I concentration. The sows’ serum I and thyroxine did not respond to glucosinolates (Expt 1) or these diets caused an increase in concentration (Expt 2). Both these criteria seem unsuitable for the diagnosis of I status of adult animals. Glucosinolates and their degradation compounds may affect the thyroid and the mammary glands resulting in lower I milk transfer and higher renal and intestinal I excretion.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2001

Footnotes

*

Presented in part at the 3rd international workshop on 'Antinutritional factors in legume seeds and rapeseed', Wageningen, the Netherlands (Schöne et al. 1998b).

References

Agricultural Research Council (1981) The Nutrient Requirement of Pigs. Slough:Commonwealth Agricultural Bureaux.Google Scholar
Ajjan, RA, Kamaruddin, NA, Crisp, M, Watson, PF, Ludgate, M & Weetman, AP (1998) Regulation and tissue distribution of the human sodium iodide symporter gene. Clinical Endocrinology 49, 517523.CrossRefGoogle ScholarPubMed
Bassler, R & Buchholz, H (1993) Die Chemische Untersuchung von Futtermitteln (The Chemical Analysis of Feeds). Darmstadt: VDLUFA Verlag, Band II.Google Scholar
Bell, JM (1984) Nutrients and toxicants in rapeseed meal: A review Journal of Animal Science 58, 9961010.CrossRefGoogle ScholarPubMed
Bourdon, D & Aumaitre, A (1990) Low glucosinolate rapeseeds and rapeseed meals: effect of technological treatments on chemical composition, digestible energy content and feeding value for growing pig. Animal Feed Science and Technology 30, 175191.CrossRefGoogle Scholar
Campbell, LD, Slominski, BA, Falk, KC & Wang, Y (1999) Low-glucosinolate canola in laying hen diets. In Proceedings of the 10th International Rapeseed Congress [Groupe Consultatif International de Recherche sur le Colza, GCIRC, editors]. Paris: GCIRC.Google Scholar
Danielsen, V, Eggum, BO, Rasmussen, KW & Sørensen, H (1987) Long-term studies of requirements to the quality of rapeseed meal from double low varieties used in sow diets. In Proceedings of the 7th International Rapeseed Congress, vol 7, pp. 17271734 [J, Krzymanski, editor]. Poznan: Plant Breeding and Acclimatization Institute.Google Scholar
Deutsche Landwirtschaftsgesellschaft (1991) DLG-Futterwerttabellen Schweine (DLG Feed Tables, Pigs), 6th ed.Frankfurt am Main: DLG-Verlag.Google Scholar
Devilat, J & Skoknic, A (1971) Feeding high levels of rapeseed meal to pregnant gilts. Canadian Journal of Animal Science 51, 715719.CrossRefGoogle Scholar
Di Stefano, J & Sapin, V (1987) Fecal and urinary excretion of six iodothyronines in the rat. Endocrinology 121, 17421750.CrossRefGoogle ScholarPubMed
Drochner, W (1989) Einflüsse von Fettzulagen an Sauen auf Aufzuchtleistung und Fruchtbarkeit (Effects of additional fat for sows on rearing performance and fertility). übersichten Tierernährung 17, 99138.Google Scholar
Etienne, M & Dourmad, JY (1994) Effects of zearalenone or glucosinolates in the diet on reproduction in sows: A review. Livestock Production Science 40, 99113.CrossRefGoogle Scholar
European Community (1990) Oilseeds – determination of glucosinolates – high performance liquid chromatography. Official Journal of European Commission L170, 2734.Google Scholar
European Community (1999) Commission Regulation (EC) No. 2316/1999 of 22 October 1999 laying down detailed rules for the application of Council Regulation (EC) No. 1251/1999 establishing a support system for producers of certain arable crops. Official Journal of the European Community L280, 4365.Google Scholar
Fecher, PA, Goldmann, I & Nagengast, A (1998) Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. Journal of Analytical Atomic Spectrometry 13, 977982.CrossRefGoogle Scholar
Fenwick, GR (1984) Rapeseed as an animal feedingstuff – The problems and analysis of glucosinolates. Journal of the Association of Public Analysts 22, 117227.Google Scholar
Fenwick, GR, Griffiths, NM & Heaney, RK (1983) Bitterness in brussels sprouts (Brassica oleracea L var. gemmifera): The role of glucosinolates and their breakdown products. Journal of the Science of Food and Agriculture 34, 7380.CrossRefGoogle Scholar
Gesellschaft fūr Ernährungsphysiologie (1987) Energie-und Nährstoffbedarf landwirtschaftlicher Nutztiere. Schweine (Energy and Nutrient Requirements of Farm Animals. Pigs). Frankfurt (Main): DLG-Verlag.Google Scholar
Gürtler, H, Körber, R, Pethes, G & Furcht, G (1982) Jodmangel und Schilddrüsenfunktion bei Mutterschweinen und deren Nachkommen (Iodine deficiency and thyroid function of sows and their offspring). In Mengen-und Spurenelemente, vol 2, pp.363–372 [M, Anke, editor]. Leipzig: University of Leipzig.Google Scholar
Jahreis, G, Richter, GH, Hartung, H, Flachowsky, G & Lübbe, H (1995) Einsatz von Rapskuchen in der Milchviehfütterung und Auswirkungen auf die Milchqualität (Use of rapeseed cake in dairy cow feeding and influence on milk quality). Das Wirtschaftseigene Futter – Forage 41, 99114.Google Scholar
Jongen, WM (1996) Glucosinolates in Brassica: occurrence and significance as cancer-modulating agents. Proceedings of the Nutrition Society 55, 433446.CrossRefGoogle ScholarPubMed
Kohler, H, Taurog, A & Dunford, HB (1988) Spectral studies with lactoperoxidase and thyroid peroxidase: Interconversions between native enzyme, Compound II, and Compound III. Archiv of Biochemistry and Biophysics 264, 438439.CrossRefGoogle ScholarPubMed
Kraft, W & Dürr, UM (1996) Klinische Labordiagnostik in der Tiermedizin (Laboratory diagnosis in veterinary medicine).4th ed., p. 360. Stuttgart, Germany and New York, NY: Schattaner Verlagsgesellschaft.Google Scholar
Lange, R, Petrzika, M & Linow, F (1986) Zur Kenntnis der Schwefelverbindungen in Raps- (Brassica napus) Varietäten und Verarbeitungsprodukten. 2 Mitt.: Enzymatische Spaltung von Glucosinolaten, Isolierung und gaschromatographisch-massenspektrometrische Identifizierung der entstehenden Aglucone (About sulphur compounds in rapeseed (B napus) varieties and processing products. 2nd communication. Enzymatic cleavage of glucosinolates, isolation and gas chromatographic–mass spectrometric identification of aglucones). Die Nahrung 30, 10391042.CrossRefGoogle Scholar
Lüdke, H & Schöne, F (1988) Copper and iodine in pig diets with high glucosinolate rapeseed meal. 1. Performance and thyroid hormone status of growing pigs fed a diet with copper sulphate solution treated or untreated rapeseed meal and supplements of iodine copper or a quinoxaline derivative. Animal Feed Science and Technology 22, 3343.CrossRefGoogle Scholar
Lüdke, H & Schöne, F (1994) Prüfung von Rapskuchen im Verdauungsversuch mit Schweinen (Testing of rapeseed cake in digestibility experiment with pigs) In Proceedings of the 106th Congress of VDLUFA (Verband der Landwirtschaftlichen Untersuchungs- und Forschungsanstalten) pp.963966. [H, Zarges, editor]. Darmstadt: VDLUFA Verlag.Google Scholar
Maheshwari, PN, Stanley, DW, Beveridge, TJ & Van de Voort, FR (1981) Localization of myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) in cotelydon cells of rapeseed. Journal of Food and Biochemistry 5, 3961.CrossRefGoogle Scholar
Miller, JK, Swanson, EW & Spalding, GE (1974) Iodine absorption, excretion, recycling and tissue distribution in the dairy cow. Journal of Dairy Science 58, 15781593.CrossRefGoogle Scholar
National Research Council (1997) Nutrient Requirement of Swine, 10th ed. Washington, DC: National Academy of Science.Google Scholar
Nürnberg, , , Karin, Kracht, W & Nürnberg, G (1994) Zum Einfluß der Rapskuchenfütterung auf die Schlachtkörper- und Fettqualität beim Schwein (The influence of rapeseed-cake in the rations for growing-finishing pigs on carcass value and fat quality). Züchtungskunde 66, 230241.Google Scholar
Oginsky, EL, Stein, AE & Greer, MA (1965) Myrosinase acitivity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proceedings of the Society of Experimental Biology and Medicine 119, 360364.CrossRefGoogle Scholar
Paik, IK, Robblee, AR & Clandinin, DR (1980) The effect of sodium thiosulfate and hydroxo-cobalamin on rats fed nitrile-rich or goitrin-rich rapeseed meals. Canadian Journal of Animal Science 60, 10031013.CrossRefGoogle Scholar
Rillema, JA & Rowady, DL (1997) Characteristics of prolactin stimulation of iodide uptake into mouse mammary gland explants. Proceedings of the Society of Experimental Biology and Medicine 215, 366369.CrossRefGoogle ScholarPubMed
Röhnisch, H-G, Knape, G & Becker, J (1987) Qualitätsanforderungen für Mischfuttermittel, Wirk- und Mineralstoffmischungen und wissenschaftliche Empfehlungen für den Einsatz in der Tierproduktion (Quality Requirements of Compound Feeds and Mineral Vitamin Premixes and Feeding Recommendations in Animal Production). Leipzig: Agrabuch.Google Scholar
Rowan, TG, Lawrence, TLJ & Kershaw, SJ (1991) Effects of dietary copper and probiotic on glucosinolate concentrations in ileal digesta and in faeces of growing pigs given diets based on rapeseed meals. Animal Feed Science and Technology 35, 247258.CrossRefGoogle Scholar
Rudolph, B (1993) Zur Bestimmung von Thiocyanat im Serum mittels HPLC (Determination of thiocyanate in serum by HPLC). In Proceedings of the 105th Congress of VDLUFA (Verband der Landwirtschaftlichen Untersuchungs- und Forschungsanstalten) pp.677–679 [H, Zarges, editor]. Darmstadt: VDLUFA Verlag.Google Scholar
Rundgren, M (1983) Low-glucosinolate rapeseed products for pigs – a review. Animal Feed Science and Technology 9, 239262.CrossRefGoogle Scholar
Schöne, F, Groppel, B, Hennig, A, Jahreis, G & Lange, R (1997) Rapeseed meals, methimazole, thiocyanate and iodine affect growth and thyroid. Investigations into glucosinolate tolerance in the pig. Journal of the Science of Food and Agriculture 74, 6980.3.0.CO;2-0>CrossRefGoogle Scholar
Schöne, F, Hartung, H, Jahreis, G, Graf, T & Tischendorf, F (1998 a) Prüfung fett-reicher Rapsfuttermittel (Saat und Kuchen) an Zuchtsauen – Futteraufnahme, Aufzuchtergebnisse und Milch (fett) zusammensetzung (Evaluation of high fat rape feeds (seed and cake) on breeding sows – Feed intake, rearing results and milk fat composition). Journal of Animal Physiology and Animal Nutrition 79, 184197.CrossRefGoogle Scholar
Schöne, F, Jahreis, G, Lange, R, Seffner, W, Groppel, B, Hennig, A & Lüdke, H (1990) Effect of varying glucosinolate and iodine intake via rapeseed meal diets on serum thyroid hormone level and total iodine in the thyroid in growing pigs. Endocrinologia Experimentalis 24, 415427.Google ScholarPubMed
Schöne, F, Jahreis, G, Lüdke, H, Groppel, B, Kirchner, E & Bock, H-D (1986) Hypothyreose bei Sauen und Ferkeln nach Fütterung einer Kartoffel-Rapsextraktionsschrotsilage (Hypothyroidism of sows and their piglets after feeding of potato–rapeseed-meal ensilage). Archiv für Experimentelle Veterinärmedizin 40, 507519.Google Scholar
Schöne, F, Leiterer, M & Jahreis, G (1998) The effect of rapeseed and rapeseed press cake with different glucosinolate content on sows and their piglets. Recent Advances of Research in Antinutritional Factors in Legume Seeds and Rapeseed.In Proceedings of the Third International Workshop on ‘Antinutritional Factors in Legume Seeds and Rapeseed’, EAAP publication no 93, pp. 213216 [AJM, Jansman, GD, Hill, J, Huisman & AFB van der, Poel, editors]. Wageningen: Wageningen Pers.Google Scholar
Schöne, F, Leiterer, M, Jahreis, G & Rudolph, B (1997 b) Effect of rapeseed feedstuffs with different glucosinolate content and the iodine administration on the gestating and lactating sow. Journal of Veterinary Medicine A 44, 325339.CrossRefGoogle ScholarPubMed
Schöne, F & Paetzelt, H (1987) Feeding of high glucosinolate rapeseed meal or administration of potassium thiocyanate and excretion of SCN- in the urine of growing pigs. In Proceedings of the 7th International Rapeseed Congress, vol 7, pp.1735–1741. [J, Krzymanski, editor]. Poznan: Plant Breeding and Acclimatisation Institute.Google Scholar
Schöne, F, Rudolph, B, Kirchheim, U & Knapp, G (1997 c) Counteracting the negative effects of rapeseed and rapeseed press cake in pig diets. British Journal of Nutrition 78, 947962.CrossRefGoogle ScholarPubMed
Schuld, FW & Bowland, JP (1968) Dietary rapeseed meal for swine reproduction. Canadian Journal of Animal Science 48, 5764.CrossRefGoogle Scholar
Spiegel, C, Besetti, GE, Rossi, GL & Blum, JW (1993) Normal circulating triiodothyronine concentrations are maintained despite severe hypothyroidism in growing pigs fed rapeseed presscake meal. Journal of Nutrition 123, 15541561.CrossRefGoogle ScholarPubMed
Spitzweg, C, Joba, W, Eisenmenger, W & Heufelder, AE (1998) Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland, and gastric mucosa. Journal of Clinical Endocrinology and Metabolism 83, 17461751.CrossRefGoogle ScholarPubMed
Steel, GG & Torrie, JH (1980) Principles and Procedures of Statistics, 2nd ed. pp. 186–187. New York and Toronto: McGraw-Hill Inc.Google Scholar
Taurog, A (1985) Hormone synthesis: thyroid iodine metabolism.In Werner‘s the Thyroid, 5th ed., pp. 53–97. [SH, Ingbar & LE, Braverman, editors]. Philadelphia PA: JB Lippincott Company.Google Scholar
Thomas, L (1995) Labor und Diagnose: Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik (Laboratory and diagnosis: Indication and Evaluation of Laboratory Findings for the Medical Diagnosis). 4th ed. [Thomas, L, editor]. Marburg: Die Medizingesellschaft.Google Scholar
Tiran, B, Rossipal, E, Tiran, A & Lorenz, O (1993) Selenium and iodine concentration in human milk and milk formulas in Styria, Austria. In Trace Elements in Man and Animals pp. 10581061. [M, Anke, D, MeissnerCF, Mills, editors]. Gersdorf: Verlag Media Touristik.Google Scholar
Tischendorf, F, Kirchheim, U, Leiterer, M & Schöne, F (1998) Beurteilung von Rapskuchen im Experiment mit wachsenden Schweinen (Evaluation of rapeseed press cake in experiments with growing pigs). Proceedings of the Society of Nutrition Physiology 7, 44.Google Scholar