Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T11:16:58.911Z Has data issue: false hasContentIssue false

Polyamines and their biosynthetic decarboxylases in various tissues of the young rat during undernutrition

Published online by Cambridge University Press:  24 October 2018

P. A. McAnulty
Affiliation:
Department of Growth and Development, Institute of Child Health, Guilford Street, London WC1N 1EH
J. P. G. Williams
Affiliation:
Department of Growth and Development, Institute of Child Health, Guilford Street, London WC1N 1EH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

  1. 1. Male weanling rats were maintained at a constant body-weight by feeding them reduced amounts of the normal diet for various periods up to 4 weeks. Control male rats were allowed free access to the normal diet and some were killed at the beginning of the experiment and others at the same ages as the experimental rats.

  2. 2. After killing by cervical dislocation the rats had their liver, quadriceps muscles and spleen removed. The tissues were weighed and the activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and 5-adenosylmethionine decarboxylase (SAMD; EC 4.1.1.50) assayed in each tissue. In the liver the content of the polyamines (spermidine and spermine) and putrescine was also measured.

  3. 3. The liver and quadriceps muscles showed an over-all maintenance of weight during undernutrition, but the spleen lost weight during the first 7 d of undernutrition and then remained constant. The weight of the liver increased by approximately 50 % following the daily maintenance feed, but returned to its prefeeding value by 24 h after feeding.

  4. 4. During the first 7 d of undernutrition ODC activity decreased in all three tissues, and remained fairly constant thereafter. In the liver there were marked increases in the activity of ODC during the first 4 h after the daily feed, but the activity then decreased to prefeeding values. SAMD activity tended to remain normal in the liver, decreased initially and then returned to normal in the quadriceps muscles, and remained normal initially and then decreased in the spleen. Hepatic SAMD activity showed no consistent response to the daily feed, but quadriceps SAMD activity increased significantly between 1 and 8 h after feeding.

  5. 5. Hepatic putrescine content remained constant during undernutrition whilst spermine increased slightly and was then maintained above normal for liver size. Hepatic spermidine content decreased initially and then remained constant. Putrescine increased slightly in response to the daily feed and spermidine increased considerably. Spermine content was unaffected by the daily feed.

  6. 6. It is suggested that the response of polyamine synthesis in the various tissues is primarily dependent upon the way in which nutrients are made available to the tissues. The maintenance of spermine content in the liver at the expense of spermidine may be related to differential changes in the nucleic acids.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

Agrell, I. P. & Heby, O. (1968). Expl Cell Res. 50, 668.CrossRefGoogle Scholar
Agrell, I. P. & Heby, O. (1971). Hoppe-Seyler's Z. physio J. Chem. 352, 39.CrossRefGoogle Scholar
Aoyama, H. & Chaimovich, H. (1973). Biochim. biophys. Acta 309, 502.CrossRefGoogle Scholar
Atkins, F. L. & Beaven, M. A. (1975). Biochem. Pharmac. 24, 763.CrossRefGoogle Scholar
Chiu, J.-F. & Sung, S. C. (1972). Biochim. biophys. Acta 281, 535.CrossRefGoogle Scholar
Deane, H. W. (1944). Anat. Rec. 88, 39.CrossRefGoogle Scholar
Dickerson, J. W. T. & McAnulty, P. A. (1975). Br. J. Nutr. 33, 171.CrossRefGoogle Scholar
Domschke, S. & Soling, H. D. (1973). Hormone Metab. Res. 5, 97.CrossRefGoogle Scholar
Fausto, N. (1969). Biochim. biophys. Acta 190, 193.CrossRefGoogle Scholar
Fausto, N. (1971). Biochim. biophys. Acta 238, 116.CrossRefGoogle Scholar
Feldman, M. J., Levy, C. C. & Russell, D. H. (1972). Biochemistry, N. Y. 11, 671.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochem. J. 136, 935.CrossRefGoogle Scholar
Gibson, K. & Harris, P. (1974). Cardiovasc. Res. 8, 668.CrossRefGoogle Scholar
Hayashi, S., Aramaki, Y. & Noguchi, T. (1972). Biochem. biophys. Res. Commun. 46, 795.CrossRefGoogle Scholar
Janne, J. & Raina, A. (1968). Acta chem. scand. 22, 1349.CrossRefGoogle Scholar
Janne, J. & Raina, A. (1969). Biochim. biophys. Acta 174, 769.CrossRefGoogle Scholar
Janne, J., Raina, A. & Siimes, M. (1964). Acta physiol. scand. 62, 352.CrossRefGoogle Scholar
Janne, J., Schenone, A. & Williams-Ashman, H. G. (1971). Biochem. biophys. Res. Commun. 42, 758.CrossRefGoogle Scholar
Janne, J. & Williams-Ashman, H. G. (1971 a). Biochem. biophys. Res. Commun. 42, 222.Google Scholar
Janne, J. & Williams-Ashman, H. G. (19716). J. biol. Chem. 246, 1725.CrossRefGoogle Scholar
Jones, R. D., Hampton, J. K. & Preslock, J. P. (1972). Analyt. Biochem. 49, 147.CrossRefGoogle Scholar
Katunuma, N., Kominami, E., Kobayashi, K., Hamaguchi, Y., Banno, Y., Chichibu, K., Katsunuma, T. & Shiotani, T. (1975). In Intracellular Protein Turnover, p. 187 [R. T. Schimke and N. Katunuma, editors]. New York: Academic Press.Google Scholar
Khawaja, J. A. (1971). Biochim. biophys. Acta 254, 117.CrossRefGoogle Scholar
Leboy, P. S. (1970). Ann. N. Y. Acad. Sci. 171, 895.CrossRefGoogle Scholar
Leveille, G. A. (1967). Proc. Soc. exp. Biol. Med. 125, 85.CrossRefGoogle Scholar
Leveille, G. A. & Chakrabarty, K. (1967). J. Nutr. 93, 546.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McAnulty, P. A. & Dickerson, J. W. T. (1973). Pediat. Res. 7, 778.CrossRefGoogle Scholar
McAnulty, P. A. & Dickerson, J. W. T. (1974). Br. J. Nutr. 32, 301.CrossRefGoogle Scholar
McAnulty, P. A. & Williams, J. P. G. (1975a). Proc. Nutr. Soc. 34, 32..Google Scholar
McAnulty, P. A. & Williams, J. P. G. (19756). Biochem. Soc. Trans. 3, 521.CrossRefGoogle Scholar
Morris, D. R. & Fillingame, R. H. (1974). Annu. Rev. Biochem. 43, 303.CrossRefGoogle Scholar
Mulinos, M. G. & Pomerantz, L. (1940). J. Nutr. 19, 493.CrossRefGoogle Scholar
Pegg, A. E. & Williams-Ashman, H. G. (1968a). Biochem. J. 108, 553.CrossRefGoogle Scholar
Pegg, A. E. & Williams-Ashman, H. G. (19686). Biochem. biophys. Res. Commun. 30, 76.CrossRefGoogle Scholar
Pegg, A. E. & Williams-Ashman, H. G. (1969). J. biol. Chem. TM. 682.Google Scholar
Raina, A. (1963). Acta physiol. scand. 60, Suppl. 218.Google Scholar
Raina, A. & Cohen, S. S. (1966). Proc. Natl. Acad. Sci., U.S.A. 55, 1587.CrossRefGoogle Scholar
Raina, A. & Hannonen, P. (1971). FEBS Lett. 16, 1.CrossRefGoogle Scholar
Raina, A. & Janne, J. (1970). Fedn Proc. Am. Fedn. Socs exp. Biol. 29, 1568.Google Scholar
Russell, D. H. & Snyder, S. H. (1968). Proc. Natl. Acad. Sci. U.S.A. 60, 1420.CrossRefGoogle Scholar
Schlenk, F. (1965). In Transmethylation and Methionine Biosynthesis, p. 48 [S. K. Shapiro and F. Schlenk, editors]. Chicago: University of Chicago Press.Google Scholar
Schrock, T. R., Oakman, N. J. & Bucher, N. L. R. (1970). Biochim. biophys. Acta 204, 564.CrossRefGoogle Scholar
Siekevitz, P. & Palade, G. E. (1962). J. cell Biol. 13, 217.CrossRefGoogle Scholar
Siimes, M. (1967). Acta physiol. scand. Suppl. 298.Google Scholar
Sturman, J. A. & Kremzner, L. T. (1974). Life Sci. 14, 977.CrossRefGoogle Scholar
WaterTow, J. C. & Stephen, J. M. L. (1968). Clin. Sci. 35, 287.Google Scholar
Yager, J. D., Lichfenstein, M. J., Bonney, R. J., Hopkins, H. A., Walker, P. R., Dorn, C. G. & Potter, V. R. (1974). J. Nutr. 104, 273.Google Scholar