Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T09:54:26.591Z Has data issue: false hasContentIssue false

On the origin of the increased tissue iron content in graded magnesium deficiency states in the rat

Published online by Cambridge University Press:  09 March 2007

Klaus Schumann
Affiliation:
1Walther Straub-Institut für Pharmakologie u. Toxikologie, Nussbaumstr. 26, D-80336 München, Germany
Annette Lebeau
Affiliation:
2Pathologisches Institut, Thalkirchnerstr. 36, 80337 München, Germany
Ursula Gresser
Affiliation:
3Medizinische Poliklinik, Pettenkoferstr. 8a, 80336 München, Germany
Theodor Gunther
Affiliation:
4Institut für Molekularbiologie und Biochemie, Amimstr. 22, 14195, Berlin, Germany
Jürgen Vormann
Affiliation:
4Institut für Molekularbiologie und Biochemie, Amimstr. 22, 14195, Berlin, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To investigate the mechanism of tissue Fe accumulation in graded Mg deficiency rats were fed on diets of different Mg contents (70, 110, 208, 330, and 850 mg Mg/kg) for 10, 20, and 30 d during rapid growth. There was no significant impact of Mg deficiency or high luminal Mg concentrations on intestinal 59Fe transfer in vitro or in vivo. Plasma Mg concentrations and body weight started to decrease after 10 d. Significant haemolytic anaemia was observed after 20 d with siderosis in liver and spleen developing in parallel. Anaemia showed no features of Fe deficiency or infiammation. Comparison between the 70 mg Mg/kg group and animals that received the same quantity of a Mg-adequate diet (850 mg Mg/kg) permitted estimation of quantities of Fe liberated by haemolysis and the increased Fe content in liver and spleen. Both variables showed a high degree of correlation, indicating that the excess of liberated haemoglobin Fe was stored in the tissue. The erythropoietic activity was high during rapid growth, i.e. at days 10 and 20 and decreased significantly after 30 d in all except the most Mg-deficient groups. However, haemolytic anaemia developed because even the high erythropoietic activity in the 70 and 110 mg Mg/kg groups was not sutlicient to recycle all haemoglobin Fe liberated by haemolysis. After 30 d of Mg-deficient feeding the erythrocyte Mg content had decreased to 40% of control values. According to the literature Mg-deficient erythrocytes have a decreased survival time which is likely to be the cause of the observed haemolysis.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Bothwell, T. H., Charlton, R. W., Cook, J. D. & Finch, C. A. (1979). Iron Metabolism in Man, pp. 327352. Oxford, London, Edinburgh, Melbourne: Blackwell Scientific Publications.Google Scholar
Classen, H. G., Speich, M., Schimatschek, H. F. & Rattanatayarom, W. (1994). Functional role of magnesium in vivo. In Magnesium, 1993, pp. 1330 [Golf, S.Dralle, D. and Vecchient, editors]. London: John Libbey.Google Scholar
Cook, D.A. (1973). Availability of magnesium: balance studies in rats with various inorganic salts. Journal of Nutrition 103, 13651370.Google Scholar
Crichton, R. R. (1991). Inorganic Biochemistry of Iron Metabolism. New York: Ellis Horwood.Google Scholar
Elin, R. J., Armstrong, W. D. & Singer, L. (1971). Enzyme, adenosine triphosphate, and blood cellular changes in magnesium deficient and control rats. Proceedings of the Society for Experimental Biology and Medicine 137, 635640.CrossRefGoogle Scholar
Fisher, R. B. & Parsons, D. S. (1949). A preparation of surviving rat small intestine for the study of absorption. Journal of Physiology 110, 3646.Google Scholar
Günther, T. (1981). Biochemistry and pathobiochemistry of magnesium. Magnesium Bulletin 3, 91101.Google Scholar
Günther, T. & Vormann, J. (1985). Removal and reuptake of intracellular magnesium. Magnesium Bulletin 7, 6669.Google Scholar
Günther, T., Vormann, J.Höllriegl, V., Disch, G. & Classen, H.-G. (1992). Role of lipid peroxidation and vitamin E in magnesium deficiency. Magnesium Bulletin 14, 5766.Google Scholar
Kreuzer, M. & Kirchgessner, M. (1991). Endogenous iron excretion. A quantitative means to control iron metabolism. Biological Trace Element Research 29, 7792.Google Scholar
Lambard, M., Bomford, A.B., Polson, R. J., Bellingham, A. J. & Williams, R. (1990). Differential expression of transferrin receptor in duodenal mucosa in iron overload. Gastroenterology 98, 976984.CrossRefGoogle Scholar
Lynch, S. R. (1984). Iron. In Absorption of Mineral Nutrients, pp. 89124 [Solomons, N. W. and Rosenberg, I. H. editors]. New York: Alan R. Liss Inc.Google Scholar
McCance, R. A. & Widdowson, E. M. (1937). Absorption and excretion of iron. Lancet, 680684.CrossRefGoogle Scholar
Oken, M. M., Lichtman, M. A., Miller, D. R. & Leblond, P. (1971). Spherocytic hemolytic disease during magnesium deprivation in the rat. Blood 38, 468478.CrossRefGoogle ScholarPubMed
Raja, K. B., Simpson, R. J. & Peters, T. J. (1987). Effect of Ca2+ and Mg2+ on the uptake of Fe3+ by mouse intestinal mucosa. Biochimica ef Biophysica Acta 923, 4651.CrossRefGoogle ScholarPubMed
Rob, P. M., Lebeau, A., Maas, S., Weigelt, J., Schmid, H., Mansky, T. & Classen, H.-G. (1993). Ciclosporine-induced nephrotoxicity in rats affected by different dietary magnesium levels. Magnesium Bulletin 15, 6975.Google Scholar
Schaefer, H. E. (1995). Die histologische Bearbeitungstechnik von Beckenkammbiopsien auf der Basis von Entkalkung und Paraffineinbettung unter Berücksichtigung osteologischer und hämatologischer Fragestellungen (Histological techniques for the treatment of biopsies from the pelvic crest on the basis of decalcification and imbedding with regard to osteological and haematological questions). Pathologe 16, 1127.CrossRefGoogle Scholar
Schümann, K., Elsenhans, B., Ehtechami, C. & Forth, W. (1990 a). Rat intestinal iron transfer capacity and the longitudinal distribution of its adaptation to iron deficiency. Digestion 46, 3545.CrossRefGoogle ScholarPubMed
Schümann, K., Elsenhans, B., Ehtechami, C. & Forth, W. (1990 b). Increased intestinal iron absorption in rats with normal hepatic iron stores. Kinetic aspects of the adaptive response to parenteral iron repletion. Biochimica et Biophysica Acta 1033, 277281.CrossRefGoogle ScholarPubMed
Schümann, K., Osterloh, K. & Forth, W. (1986). Independence of in vitro iron absorption from mucosal transferrin content in rat jejunal and ileal segments. Blut 53, 391400.Google Scholar
Searle, J., Kerr, J. F. R., Halliday, J. W. & Powell, L. W. (1994). Iron storage diseases. In Pathology of the Liver, 3rd ed., pp. 219241 [MacSween, R. N. M.Anthony, P. P.Scheuef, P. J.Burt, A. D. and Portman, B. C. editors]. Edinburgh, London, Madrid, Melbourne, New York, Tokyo: Churchill Livingstone.Google Scholar
Signorini, C., Ferali, M., Ciccoli, L., Sugherini, L., Magnani, A. & Comporti, M. (1995). Iron release, membrane protein oxidation and erythrocyte ageing. FEBS Letters 362, 165170.Google Scholar
Vormann, J., Günther, T., Höllriegl, V. & Schümann, K. (1995). Effect of various degree and duration of magnesium deficiency on lipid peroxidation and mineral metabolism in rats. Journal of Nutritional Biochemistry 6, 681688.Google Scholar
Whittaker, P., Mahoney, A. W. & Hedricks, D. G. (1984). Effect of iron-deficiency anaemiaon per cent blood volume in growing rats. Journal of Nutrition 114, 11371142.Google Scholar
Woods, K. L. & Fletcher, S. (1994). Long-term outcome after intravenous magnesium sulphate in suspected acute myocardial infarction: the second Leicester intravenous magnesium intervention trial (LIMIT-2). Lancet 343, 816819.Google Scholar