Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T20:35:52.081Z Has data issue: false hasContentIssue false

Nutritive value of groundnut (Arachis hypogaea)

1. Amino acid composition of different varieties of groundnut grown in the Punjab

Published online by Cambridge University Press:  09 March 2007

A. K. Chopra
Affiliation:
Department of Chemistry and Biochemistry, Punjab Agricultural University, Ludhiana, India
G. S. Sidhu
Affiliation:
Department of Chemistry and Biochemistry, Punjab Agricultural University, Ludhiana, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Nine important varieties of groundnut (Arachis hypogaea Linn.) were analysed for amino acid composition by an ion-exchange chromatographic procedure. Cystine, as cysteic acid, and methionine and tryptophan were determined by colorimetric methods.

2. Small, but statistically significant, differences in the contents of nitrogen, serine, glutamic acid, proline, alanine, leucine, phenylalanine, tyrosine, lysine, methionine and cystine were found in the varieties.

3. A positive correlation (P < 0.05) between methionine any cystine was observed.

4. There was, however, no indication that selection from the varieties studied would permit development of a variety of superior protein quality.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Ahuja, H. C. (1964). M.Sc. (agric.) Thesis, Punjab Agricultural University.Google Scholar
Association of Official Agricultural Chemists (1960). Official Methods of Analysis, 9th ed. Washington, D.C.: Association of Official Agricultural Chemists.Google Scholar
Bender, A. E., Palgrave, J. A. & Doell, B. H. (1959). Analyst, Lond. 84, 526.CrossRefGoogle Scholar
Bolhuis, G. G. (1963). Qualitas Pl. Mater. veg. 10, 236.CrossRefGoogle Scholar
Block, R. J. & Mitchell, H. H. (19461947). Nutr. Abstr. Rev. 16, 249.Google Scholar
Bressani, R., Elias, L. G., Scrimshaw, N. S. & Guzman, M. A. (1962). Cereal Chem. 39, 59.Google Scholar
Busson, F., Carbiener, R., Georgin, A., Lanza, J. & Dubois, H. (1960). Nutr. Abstr. Rev. 30, 1222.Google Scholar
Cartter, J. L. & Hopper, T. H. (1942). Tech. Bull. U.S. Dep. Agric. no. 787.Google Scholar
Desikachar, H. S. R. & De, S. S. (1947). Curr. Sci. 16, 284.Google Scholar
Quoted by Kuppuswamy, S., Srinivasan, M. & Subrahmanyan, V. (1958). Spec. Rep. Ser. Indian Coun. med. Res. no. 33.Google Scholar
Ellinger, G. M. & Boyne, E. B. (1963). Proc. Nutr. Soc. 22, xxiii.Google Scholar
FAO (1957). F.A.O. nutr. Stud. no. 16.Google Scholar
Flynn, L. M., Zuber, M. S., Leweke, D. H., Grainger, R. B. & Hogan, A. G. (1954). Cereal Chem. 31, 217.Google Scholar
Frey, K. J. (1951). Cereal Chem. 28, 123.Google Scholar
Horn, M. J., Jones, D. B. & Blum, A. E. (1946). J. biol. Chem. 166, 213.Google Scholar
Lawrence, M. J., Day, K. M., Huey, E. & Lee, B. (1958). Cereal chem. 35, 169.Google Scholar
Mauron, J. (1961). Publs natn. Res. Coun. Wash. no. 843.Google Scholar
Miller, R. C., Aurand, L. E. & Flach, W. R. (1950). Science, N. Y. 112, 57.CrossRefGoogle Scholar
Moore, S. & Stein, W. H. (1954). J. biol. Chem. 211, 907.CrossRefGoogle Scholar
Moore, S., Spackman, D. H. & Stein, W. H. (1958). Analyt. Chem. 30, 1185.CrossRefGoogle Scholar
Rosen, D. G. (1958). Processed Plant Protein Foodstuffs, p. 457. [Altschul, A. M., editor.] New York: Academic Press.Google Scholar
Schram, E., Moore, S. & Bigwood, E. J. (1954). Biochem. J. 57, 33.CrossRefGoogle Scholar
Sihlbom, E. (1962). Acta Agric. scand. 12, 148.CrossRefGoogle Scholar
Steers, E. & Sevag, M. G. (1949). Analyt. Chem. 21, 641.CrossRefGoogle Scholar
VanEtten, C. H., Miller, R. W., Wolff, I. A. & Jones, Q. (1961). J. agric. Fd Chem. 9, 79.CrossRefGoogle Scholar
Vervack, W. (1960). Agriculture, Louvain 8, 697.Google Scholar
Wolfe, M. & Fowden, L. (1957). Cereal Chem. 24, 286.Google Scholar