Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:30:25.408Z Has data issue: false hasContentIssue false

Notes on a deamination method proposed for determining ‘chemically available lysine’ of proteins

Published online by Cambridge University Press:  24 July 2007

R. M. Allison
Affiliation:
Agricultural Research Council's Food Research Institute, Colney Lane, Norwich NOR 70F
W. M. Laird
Affiliation:
Agricultural Research Council's Food Research Institute, Colney Lane, Norwich NOR 70F
R. L. M. Synge
Affiliation:
Agricultural Research Council's Food Research Institute, Colney Lane, Norwich NOR 70F
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Details of a chemical method, using acetic acid and sodium nitrite, for determining ‘available lysine’ in plant materials are given. An analytical procedure was used which distinguished lysine from ornithine; the latter was liable to arise in the course of the deamination and hydrolysis procedure.

2. The experimentally determined ‘available lysine’ contents of various samples of leaf-protein concentrates showed significant positive correlations with previously reported values for their biological value and true digestibility. ‘Available lysine’correlated significantly with total lysine liberated by direct acid hydrolysis.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Allison, R. M. (1970). Jl N.Z. Inst. Chem. 34, 127.Google Scholar
Allison, R. M. (1971). In Leaf Protein: Its Agronomy, Preparation, Quality and Use p. 78 [Pirie, N. W., editor]. I.B.P. Handbook No. 20. bOxford: Blackwcll Scientific Publications Ltd.Google Scholar
Bertho, A. & Grassmann, W. (1938). Laboratory Methods of Biochemistry p. 59 [McCartney, W., translator]. London: Macmillan.Google Scholar
Bosshard, H. (1972). Helv. chim. Acta 55, 32.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochem. J. 77, 604.CrossRefGoogle Scholar
Cranwell, P. A. & Haworth, R. D. (1971). Tetrahedron 27, 1831.CrossRefGoogle Scholar
Finot, P. A. & Mauron, J. (1972). Helv. chim. Acta 55, 1153.CrossRefGoogle Scholar
Fraenkel-Conrat, H. (1957). Meth. Enzym. 4, 247.CrossRefGoogle Scholar
Gallup, W. D. & Schmidt, C. L. A. (1930). Univ. Calif. Publs Physiol. 7, 201.Google Scholar
Gomall, A. G. & Hunter, A. (1940). Biochem. J. 34, 192.Google Scholar
Harding, H. W. J. & Rogers, G. E. (1971). Biochemistry, N. Y. 10, 624.CrossRefGoogle Scholar
Henry, K. M. & Ford, J. E. (1965). J. Sci. Fd Agric. 16, 425.CrossRefGoogle Scholar
Horigome, T. & Kandatsu, M. (1968). Agric. biol. Chem. J. 32, 1093.CrossRefGoogle Scholar
Jennings, A. C. & Watt, W. B. (1967). J. Sci. Fd Agric. 18, 527.CrossRefGoogle Scholar
Mauron, J. (1966). Int. Z. VitamForsch. 36, 362.Google Scholar
Mauron, J. (1970). Int. Z. VitamForsch. 40, 209.Google Scholar
Mirvish, S. S. (1971). J. natn. Cancer Inst. 46, 1183.Google Scholar
Mourgue, M., Baret, R. & Renai, J. (1965). Annls pharm. fr. 23, 481.Google Scholar
Perry, D. R. & Adams, W. A. (1971). Biochem. J. 125, 29P.CrossRefGoogle Scholar
Peters, J. P. & Van Slyke, D. D. (1932). Quantitative Clinical Chemistry Vol. 2, Methods p. 385. London: BailIière, Tindall & Cox.Google Scholar
Pierpoint, W. S. (1970). Rep. Rothamsted exp. Stn Part 2, p. 199.Google Scholar
Pisano, J. J., Finlayson, J. S. & Peyton, M. P. (1969). Biochemistry, N. Y. 8, 871.CrossRefGoogle Scholar
Roach, A. G., Sanderson, P. & Williams, D. R. (1967). J. Sci. Fd Agric. 18, 274.CrossRefGoogle Scholar
Vithayathil, P. J. & Murthy, G. S. (1972). Nature, New Biology 236, 101.CrossRefGoogle Scholar