Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T09:54:24.520Z Has data issue: false hasContentIssue false

Mechanisms of heat damage in proteins

7. The significance of lysine-containing isopeptides and of lanthionine in heated proteins*

Published online by Cambridge University Press:  25 March 2008

R. F. Hurrell
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
K. J. Carpenter
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
W. J. Sinclair
Affiliation:
Department of Industrial Chemistry, The Queen's University of Belfast, Belfast BT9 5AG
M. S. Otterburn
Affiliation:
Department of Industrial Chemistry, The Queen's University of Belfast, Belfast BT9 5AG
R. S. Asquith
Affiliation:
Department of Industrial Chemistry, The Queen's University of Belfast, Belfast BT9 5AG
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Studies have been made with solvent-extracted chicken muscle, bovine plasma albumin (BPA) and other proteins, all severely heated in the absence of carbohydrates so as to cause a large decrease in their fluorodinitrobenzene (FDNB)-reactive lysine contents.

2. ɛ-N-(β-L-aspartyl)-L-lysine and ɛ-N-(γ-L-glutamyl)-L-lysine isopeptides were determined after enzymic digestion of heated chicken muscle, and their content was found to increase as the material was subjected to more heat treatment. Heated chicken muscle was not found to contain lanthionine. Heated BPA, on the other hand, was found to contain lanthionine but not the isopeptides. Both lanthionine and isopeptide cross-linkages were detected in most of the other heated proteins. There was some difficulty in quantifying the amounts of isopeptides formed on heat treatment, because the enzymic digestion procedure used in their isolation appeared to be incomplete. Neither lysinoalanine nor ornithinoalanine was detected in any of the test materials.

3. The severely heated chicken muscle was fed to rats, and ileal and faecal digestibilities were studied. Protein digestibility was found to be greatly reduced after heat treatment, although the isopeptides themselves appeared to be at least as digestible as the total N component, total lysine, or FDNB-reactive lysine. However, the reduction in ileal N digestibility only partly accounted for the much larger reduction in nutritive value, as measured by net protein ratio ((weight loss of N-free animals + weight gain of test animals) ÷ weight of crude protein (N × 6.25) consumed by test animals). Possible reasons for this are discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Adrian, J., Frangne, R., Petit, L., Godon, B. & Barbier, J. (1966). AnnZs Nutv. Aliment. 20, 257.Google Scholar
Asquith, R. S., Booth, A. K. & Skinner, J. D. (1968). Biochim. biophys. Acta 181, 164.CrossRefGoogle Scholar
Asquith, R. S. & Garcia-Dorninguez, J. J. (1968). J. Soc. Dyers Colour. 84, 155.CrossRefGoogle Scholar
Asquith, R. S. & Otterburn, M. S. (1969). J. Text. Inst. 60, 208.CrossRefGoogle Scholar
Asquith, R. S. & Otterburn, M. S. (1970). J. Text. Inst. 61, 569.CrossRefGoogle Scholar
Asquith, R. S. & Otterburn, M. S. (1971). Appl. Polynz. Symp. 18, 277.Google Scholar
Asquith, R. S., Otterburn, M. S., Buchanan, J. H., Cole, M., Fletcher, J. C. & Gardner, K. L. (1970). Biochim. biophys. Acta 221, 342.CrossRefGoogle Scholar
Asquith, R. S., Otterburn, M. S. & Gardner, K. L. (1971). Experientia 27, 1388.CrossRefGoogle Scholar
Bender, A. E. & Doell, B. H. (1957). Br. J. Nutr. 11, 140.CrossRefGoogle Scholar
Bjarnason, J. & Carpenter, K. J. (1970). Br. J. Nutr. 24, 313.CrossRefGoogle Scholar
Boctor, A. M. & Harper, A. E. (1968). J. Nutr. 94, 289.CrossRefGoogle Scholar
Bohak, Z. (1964). J. biol. Chem. 239, 2878.CrossRefGoogle Scholar
Buraczewski, S., Buraczewska, L. & Ford, J. E. (1967). Acta biochim. pol. 14, 121.Google Scholar
Carpenter, K. J. (1957). Proc. 4th int. Congr. Nutr., Paris Abstr. p. 154.Google Scholar
Carpenter, K. J., Lea, C. H. & Parr, L. J. (1963). Br. J. Nutr. 17, 151.CrossRefGoogle Scholar
Carpenter, K. J., Morgan, C. B., Lea, C. H. & Parr, L. J. (1962). Br. J. Nutr. 16, 451.CrossRefGoogle Scholar
Chinard, F. P. (1951). J. biol. Chem. 199, 91.CrossRefGoogle Scholar
Cole, M., Fletcher, J. C., Gardner, K. L. & Corfield, M. C. (1971). Appl. Polym. Symp. 18, 147.Google Scholar
Donoso, G., Lewis, O. A. M., Miller, D. S. & Payne, P. R. (1962). J. Sci. Fd Agric. 13, 192.CrossRefGoogle Scholar
Dowling, L. M. & Crewther, W. C. (1964). Analyt. Biochem. 8, 244.CrossRefGoogle Scholar
Evans, R. J., Bandemer, S. L. & Bauer, D. H. (1960). J. agric. Fd Chem. 8, 383.CrossRefGoogle Scholar
Ford, J. E. (1973). In Proteins in Human Nutrition, p. 515 [Porter, J. W. G. and Rolls, B. A. editors]. London: Academic Press.Google Scholar
Ford, J. E. & Salter, D. N. (1966). Br. J. Nutr. 20, 843.CrossRefGoogle Scholar
Ford, J. E. & Shorrock, C. (1971). Br. J. Nutr. 26, 311.CrossRefGoogle Scholar
Gordon, W. G. & Ziegler, J. (1955). Archs Biochem. Biophys. 57, 80.CrossRefGoogle Scholar
Greenwood-Barton, L. H., Barnes, B. H., Mellon, T. P. A. &Payne, W. J. A. (1964). E. Afr. agric. For. J. 29, 237.CrossRefGoogle Scholar
Hayase, F., Kato, H. & Fujimaki, M. (1973). Agric. biol. Chem. J. 37, 191.CrossRefGoogle Scholar
Heilman, J., Barollier, J. & Watzke, E. W. (1957). Hoppe-Seyler's Z. physiol. Chem. 309, 219.CrossRefGoogle Scholar
Horn, M. J., Jones, D. B. & Ringel, S. J. (1941). J. biol. Chem. 138, 141.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1974). Br. J. Nutr. 32, 589.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1975). Br. J. Nutr. 33, 101.CrossRefGoogle Scholar
Mauron, J. (1970). Int. Z. VitamForsch. 40 209.Google Scholar
Mauron, J. (1972). In International Encyclopaedia of Food and Nutrition, Vol. 2, Protein and Amino Acid Functions, p-417 [Bigwood, E. J., editor]. Oxford: Pergamon Press.Google Scholar
Mecham, D. K. & Olcott, H. S. (1947). Ind. Engng Chem. ind. (int.) Edn 39, 1023.CrossRefGoogle Scholar
Miller, D. S. (1956). J. Sci. Fd Agric. 7, 337.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J. & Milner, C. K. (1965). Br. J. Nutr. 19, 547.CrossRefGoogle Scholar
Morrison, A. B. & Sabry, Z. I. (1963). Can. J. Biochem. Physiol. 41, 649.CrossRefGoogle Scholar
Nesheim, M. C. & Carpenter, K. J. (1967). Br. J. Nutr. 21, 399.CrossRefGoogle Scholar
Njaa, L. R. (1961). J. Sci. Fd Agric. 12, 757.CrossRefGoogle Scholar
Philips, H. (1936). Nature, Lond. 138, 121.CrossRefGoogle Scholar
Pisano, J. J., Finlayson, J. S. & Peyton, M. P. (1969). Biochemistry, Easton 8, 871.CrossRefGoogle Scholar
Salter, D. N. & Coates, M. E. (1971). Br. J. Nutr. 26, 55.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1185.CrossRefGoogle Scholar
Speakman, J. B. (1933). Nature, Lond. 132, 930.CrossRefGoogle Scholar
Tamer, H. & Schmidt, C. L. A. (1939). J. biol. Chem. 130, 67.Google Scholar
Valle-Riestra, J. & Barnes, R. H. (1970). J. Nutr. 100, 873.CrossRefGoogle Scholar
Varnish, S. A. & Carpenter, K. J. (1975 a). Br. J. Nutr. 34, 325.CrossRefGoogle Scholar
Varnish, S. A. & Carpenter, K. J. (1975 b). Br. J. Nutr. 34, 339.CrossRefGoogle Scholar
Waibel, P. E. & Carpenter, K. J. (1972). Br. J. Nutr. 27, 509.CrossRefGoogle Scholar
Ziegler, K. (1964). J. biol. Chem. 239, 2713.CrossRefGoogle Scholar