Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T17:00:09.963Z Has data issue: false hasContentIssue false

Losses in weight and body water in sows after weaning

Published online by Cambridge University Press:  09 March 2007

P. E. Zoiopoulos
Affiliation:
School of Agriculture, 581 King Street, Aberdeen AB9 1UD
J. H. Topps
Affiliation:
School of Agriculture, 581 King Street, Aberdeen AB9 1UD
P. R. English
Affiliation:
School of Agriculture, 581 King Street, Aberdeen AB9 1UD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The loss of body water of eight sows in the 7 d following weaning was determined using the deuterium oxide dilution technique. Four of the sows had received a concentrate diet in restricted amounts while the other four had been given the same diet mixed with two-thirds its weight of oat husks ad lib. during the whole of the preceding lactation. Certain blood and urine constituents were also measured.

2. Loss of body water was significantly less (P < 0·05) than weight loss of fasted animals, but body water losses were considerable in six of the eight animals.

3. Excretion of urinary nitrogen, urea and creatinine and levels of plasma urea were higher, while levels of plasma non-esterified fatty acids and the hydroxyproline index were lower 1 week after weaning compared with values obtained on the day following weaning.

4. These results indicate that in addition to water loss, depletion of body tissue, including protein, occurs in the newly-weaned sow.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Anderson, D. M. & Elsley, F. W. H. (1969). Journal of Agricultural Science, Cambridge 72, 475477.CrossRefGoogle Scholar
Anderson, D. M., Elsley, F. W. H. & McDonald, I. (1970). Quarterly Journal of Experimental Physiology 55, 293300.CrossRefGoogle Scholar
Baird, J. D., Black, M. W. & Faulkner, D. E. (1967). Journal of Clinical Pathology 20, 905909.CrossRefGoogle Scholar
Bannister, D. W. & Burns, A. B. (1970). Analyst, London, 95, 596600.CrossRefGoogle Scholar
Bartholomew, R. J. & Delaney, A. M. (1966). Proceedings of the Australian Association of Clinical Biochemists 1, 214217.Google Scholar
Bowland, J. P. (1967). Journal of Animal Science 26, 533539.CrossRefGoogle Scholar
Cunningham, H. M. (1971). Canadian Journal of Animal Science 51, 341350.CrossRefGoogle Scholar
Eggum, B. O. (1976). In Protein Metabolism and Nutrition, pp. 249258. [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
Faulkner, D. E. (1965). Analyst, London 90, 736744.CrossRefGoogle Scholar
Foot, J. Z. & Greenhalgh, J. F. D. (1970). British Journal of Nutrition 24, 815825.CrossRefGoogle Scholar
Harris, C. I. & Milne, G. (1981). British Journal of Nutrition 45, 423429.CrossRefGoogle Scholar
Haverberg, L. N., Omstedt, P. T., Munro, H. N. & Young, V. R. (1975). Biochimica et Biophysica Acta 405, 6771.CrossRefGoogle Scholar
Heap, F. C. & Lodge, G. A. (1967). Animal Production 9, 237245.Google Scholar
Houseman, R. A., McDonald, I. & Pennie, K. (1973). British Journal of Nutrition 30, 149156.CrossRefGoogle Scholar
Houseman, R. A., Robinson, J. J. & Fraser, C. (1978). Proceedings of the Nutrition Society 37, 64A.Google Scholar
Lodge, G. A. (1959). Journal of Agricultural Science, Cambridge 53, 177191.CrossRefGoogle Scholar
Lodge, G. A., McDonald, I. & MacPherson, R. M. (1961). Animal Production 3, 269275.CrossRefGoogle Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clinical Chemistry, 11, 624627.CrossRefGoogle Scholar
O'Grady, J. F., Elsley, F. W. H., MacPherson, R. M. & McDonald, I. (1975). Animal Production 20, 257265.Google Scholar
Salmon-Legagneur, E. (1965). Annales de Zootechnie 14, 5137.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1980). Statistical Methods, 6th ed. Ames, Iowa: Iowa State University Press.Google Scholar
Technicon Instruments Co. Ltd (1968). Technicon Methodology Sheet N4C. Basingstoke: Technicon Instruments Co. Ltd.Google Scholar
Trigg, T. E. (1974). Body composition of ruminants in relation to plane of nutrition and production. PhD Thesis, University of Aberdeen.Google Scholar
Van Kempen, G. J. M. & Grimbergen, A. H. M. (1977). Zeitschrift für Tierphysiologia Tierernährung und Futtermittekunde 38, 158173.CrossRefGoogle Scholar
Vaughan, B. E. & Boling, E. A. (1961). Journal of Laboratory and Clinical Medicine 57, 159164.Google Scholar
Weichselbaum, T. E. (1946). American Journal of Clinical Pathology 16, 4044.CrossRefGoogle Scholar
Whitehead, R. G. (1965). Lancet ii, 567570.CrossRefGoogle Scholar
Whitehead, R. G. (1967). Archives of Diseases in Childhood 42, 479484.CrossRefGoogle Scholar
Young, V. R., Alexis, S. C., Balinga, B. S., Munro, H. N. & Mueke, W. (1972). Journal of Biological Chemistry 247, 35923600.CrossRefGoogle Scholar
Zoiopoulos, P. E., English, P. R. & Topps, J. H. (1982). Animal Production 35, 2533.Google Scholar
Zoiopoulos, P. E., Topps, J. H. & English, P. R. (1978). Proceedings of the Nutrition Socieity 37, 77A.Google Scholar