Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T15:50:19.034Z Has data issue: false hasContentIssue false

Immune-modulatory actions of arginine in the critically ill

Published online by Cambridge University Press:  09 March 2007

U. Suchner*
Affiliation:
Clinic of Anaesthesiology, Grosshadern University Hospital, Ludwig Maximilian’s University, Marchioninistrasse 15, 81377 Munich, Germany
D. K. Heyland
Affiliation:
Department of Medicine, Queens University, Kingston General Hospital, Kingston, Ontario, Canada
K. Peter
Affiliation:
Clinic of Anaesthesiology, Grosshadern University Hospital, Ludwig Maximilian’s University, Marchioninistrasse 15, 81377 Munich, Germany
*
*Corresponding author: Dr med. U. Suchner, email [email protected]/. Current address: Fresenius-Kabi Deutschland GmbH, Else-Kroner-Str, 1, 61352 Bad Hanburg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Albina, JE (1996) Nitric oxide regulation of inflammation and immunity In Pharmacological Nutrition Immune Nutrition, pp. 21–32 [Cynober, L, Fürst, P and Lawin, P,editors]. Munchen: W. Zuckerschwerdt Verlag.Google Scholar
Alican, L & Kubes, P (1996) A critical role for nitric oxide in intestinal barrier function and dysfunciton. American Journal of Physiology 33, G225G237.Google Scholar
Barbul, A (1986) Arginine: biochemistry, physiology, and therapeutic implications. Journal of Parenteral and Enteral Nutrition 10, 227238.CrossRefGoogle ScholarPubMed
Barbul, A (1990) Arginine and immune function. Nutrition 6, 5358.Google ScholarPubMed
Barbul, A, Rettura, G, Levenson, SM & Seifter, E (1983) Wound healing and thymotropic effects of arginine: a pituitary mechanism of action. American Journal of Clinical Nutrition 37, 786794.CrossRefGoogle ScholarPubMed
Barbul, A, Sisto, DA, Wasserkrug, HL & Efron, G (1981) Arginine stimulates lymphocyte immune response in healthy human beings. Surgery 90, 244251.Google ScholarPubMed
Beale, JR, Bryg, DJ & Bihari, DJ (1999) Immunonutrition in the critically ill: A systematic review of clinical outcome. Critical Care Medicine 27, 27992805.CrossRefGoogle ScholarPubMed
Beckman, JS, Beckman, TW, Chen, J, Marshall, PA & Freeman, BA (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences USA 87, 16201624.CrossRefGoogle ScholarPubMed
Bernard, GR, Vincent, JL & Laterre, P (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. New England Journal of Medicine 344, 699709.CrossRefGoogle ScholarPubMed
Boekstegers, P, Weidenhofer, S, Kapsner, T & Werdan, K (1993) Continuous measurement of peripheral oxygen availability in skeletal muscle of patients with infection. Infusionstherapie Transfusions-medicin 20, 2128.Google ScholarPubMed
Boekstegers, P, Weidenhofer, S, Kapsner, T & Werdan, K (1994a) Skeletal muscle partial pressure of oxygen in patients with sepsis. Critical Care Medicine 22, 640650.CrossRefGoogle ScholarPubMed
Boekstegers, P, Weidenhofer, S, Zell, R, Holler, E, Kapsner, T, Redl, H, Schlag, G, Kaul, M, Kempeni, J & Werdan, K (1994b) Changes in skeletal muscle pO2 after administration of anti-TNF alpha-antibody in patients with severe sepsis: comparison to interleukin-6 serum levels, APACHE II, and Elebute scores. Shock 1, 246253.CrossRefGoogle ScholarPubMed
Bolaños, JP, Almeida, A, Stewart, V, Peuchen, S, Land, JM, Clark, JB & Heales, SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. Journal of Neurochemistry 68, 22272240.CrossRefGoogle ScholarPubMed
Bone, RC (1996) Sir Issac Newton, Sepsis, SIRS and CARS. Critical Care Medicine 24, 11251128.CrossRefGoogle Scholar
Boveris, A, Costa, L, Cadenas, E & Poderoso, JJ (1999) Regulation of mitochondrial respiration by adenosine diphosphate, oxygen, and nitric oxide. Methods in Enzymology 301, 188198.CrossRefGoogle ScholarPubMed
Bower, RH, Cerra, FB, Bershadsky, B, Licari, JJ, Hoyt, DB, Jensen, CT, Van Buren, CT, Rothkopf, MM, Daly, JM & Adelsberg, BR (2001) Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Critical Care Medicine 23, 436449.CrossRefGoogle Scholar
Brown, GC & Cooper, CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Letters 356, 295298.CrossRefGoogle ScholarPubMed
Bunn, HF & Poyton, RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiology Review 76, 839885.CrossRefGoogle ScholarPubMed
Cerra, BF, Lehman, S, Konstantinides, NN, Konstantinides, PE, Shronts, PE & Holman, R (1990) Effect of enteral nutrition on in vitro tests of immune function in ICU patients: a preliminary report. Nutrition 1, 8487.Google Scholar
Cerra, FB (1991) Nutrient modulation of inflammatory and immune function. American Journal of Surgery 161, 230234.CrossRefGoogle ScholarPubMed
Chavez, AM, Menconi, MJ, Hodin, RA & Fink, MP (1999) Cytokine-induced intestinal epithelial hyperpermeability: role of nitric oxide. Critical Care Medicine 27, 22462251.CrossRefGoogle ScholarPubMed
Chen, K, Inoue, M & Okada, A (1996) Expression of inducible nitric oxide synthase mRNA in rat digestive tissues after endotoxin and its role in intestinal mucosal injury. Biochemical and Biophysical Research Communications 224, 703708.CrossRefGoogle ScholarPubMed
Clementi, E, Brown, GC, Feelisch, M & Moncada, S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proceedings of the National Academy of Sciences USA 95, 76317636.CrossRefGoogle ScholarPubMed
Clementi, E, Brown, GC, Foxwell, N & Moncada, S (1999) On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proceedings of the National Academy of Sciences USA 96, 15591562.CrossRefGoogle ScholarPubMed
Cook, HT, Bune, AJ & Jansen, AS (1994) Cellular localization of inducible nitric oxide synthase in experimental endotoxic shock in the rat. Clinical Science 87, 179186.CrossRefGoogle ScholarPubMed
Daly, JM, Lieberman, MD, Goldfine, J, Shou, J, Weintraub, F, Rosato, EF & Lavin, P (1992) Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: Immunologic, metabolic, and clinical outcome. Surgery 112, 5667.Google ScholarPubMed
Daly, JM, Reynolds, J, Thom, A, Kinsley, L, Dietrick Gallagher, M, Shou, J & Ruggieri, B (1988) Immune and metabolic effects of arginine in the surgical patient. Annals of Surgery 208, 512523.CrossRefGoogle ScholarPubMed
de Graaf, JC, Banga, JD, Moncada, S, Palmer, RM, de Groot, PG & Sixma, JJ (1992) Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation 85, 22842290.CrossRefGoogle ScholarPubMed
Deitch, EA, Ma, L & Ma, WJ (1989) Inhibition of endotoxin-induced bacterial translocation in mice. Journal of Clinical Investigation 84, 3642.CrossRefGoogle ScholarPubMed
Doughty, L, Carcillo, JA & Kaplan, S (1998) Plasma nitrite and nitrate concentrations and multiple organ failure in pediatric sepsis. Critical Care Medicine 26, 157162.CrossRefGoogle ScholarPubMed
Duchen, MR & Biscoe, TJ (1992) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. Journal of Physiology 450, 1331.CrossRefGoogle ScholarPubMed
Evans, T, Carpenter, A, Silva, A & Cohen, J (1994) Inhibition of nitric oxide synthase in experimental gram-negative sepsis. Journal of Infectious Diseases 169, 343349.CrossRefGoogle ScholarPubMed
Evoy, D, Lieberman, MD, Fahey, TJ III & Daly, JM (1998) Immunonutrition: the role of arginine. Nutrition 14, 611617.CrossRefGoogle ScholarPubMed
Friedman, LM, Furberg, CD & DeMets, DL (1991) Fundamentals of clinical trials, Littleton, MA: PSG Publishing Co pp. 241–249.Google Scholar
Galban, C, Montejo, JC, Mesejo, A, Marco, P, Celaya, S, Sanchez-Segura, JM, Farre, M & Bryg, DJ (2001) An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Critical Care Medicine 28, 643648.CrossRefGoogle Scholar
Gellerich, FN, Trumbeckaite, S, Hertel, K, Zierz, S, Muller-Werdan, U, Werdan, K, Redl, H & Schlag, G (1999) Impaired energy metabolism in hearts of septic baboons: diminished activities of Complex I and Complex II of the mitochondrial respiratory chain. Shock 11, 336341.CrossRefGoogle ScholarPubMed
Gomez-Jimenez, J, Salgado, A, Mourelle, M, Martin, MC, Segura, RM, Peraucaula, R & Moncada, S (1995) L-arginine: nitric oxide pathway in endotoxemia and human septic shock. Critical Care Medicine 23, 253258.CrossRefGoogle ScholarPubMed
Gonce, SJ, Peck, MD, Alexander, JW & Miskell, PW (1990) Arginine supplementation and its effect on established peritonitis in guinea pigs. Journal of Parenteral and Enteral Nutrition 14, 237244.CrossRefGoogle ScholarPubMed
Herrmann, FR, Safran, C & Levkoff, SE (1992) Serum albumin level on admission as a predictor of death, length of stay, and readmission. Archives of Internal Medicine 152, 125130.CrossRefGoogle ScholarPubMed
Heyland, DK, Cook, DJ & Guyatt, GH (1994) Does the formulation of enteral feeding products influence infectious morbidity and mortality rates in the critically ill patient? A critical review of the evidence. Critical Care Medicine 22, 11921202.CrossRefGoogle Scholar
Heyland, DK, Novak, F, Drover, JW, Jain, M, Su, X & Suchner, U (2001) Should immunonutrition become routine in the critically ill patient? A systematic review of the evidence. The Journal of the American Medical Association 286, 944953.CrossRefGoogle Scholar
Heys, SD, Walker, LG, Smith, I & Eremin, O (1999) Enteral nutritional suplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Annals of Surgery 229, 467477.CrossRefGoogle Scholar
Isobe, M, Katsuramaki, T, Hirata, K, Kimura, H, Nagayama, M & Matsuno, T (1999) Beneficial effects of inducible nitric oxide synthase inhibitor on reperfusion injury in the pig liver. Transplantation 68, 803813.CrossRefGoogle ScholarPubMed
Isobe, M, Katsuramaki, T, Kumura, H, Nagayama, M, Matsuno, T, Yagihashi, A & Hirata, K (2000) Role of inducible nitric oxide synthase on hepatic ischemia and reperfusion injury. Transplant Proceedings 32, 16501652.CrossRefGoogle ScholarPubMed
Kemen, M, Senkal, M & Homann, HH (1995) Early postoperative enteral nutrition with arginine, n-3 fatty acids and ribonucleic acid-supplemented diet versus placebo in cancer patients: an immunologic evaluation of Impact. Critical Care Medicine 23, 652659.CrossRefGoogle ScholarPubMed
Kirk, SJ & Barbul, A (1990) Role of arginine in trauma, sepsis, and immunity. Journal of Parenteral and Enteral Nutrition 14, 226S229S.CrossRefGoogle ScholarPubMed
Kolios, G, Brown, Z & Robson, RL (2001) Inductible nitric oxide synthase activity and expression in a human colonic epithelial cell line, HT-29. British Journal of Pharmacology 116, 28662872.CrossRefGoogle Scholar
Konturek, JW, Thor, P & Domschke, W (1995) Effects of nitric oxide on antral motility and gastric emptying in humans. European Journal of Gastroenterology & Hepatology 7, 97102.Google ScholarPubMed
Kubes, P (1992) Nitric oxide modulates epithelial permeability in the feline small intestine. American Journal of Physiology 262, G1138G1142.Google ScholarPubMed
Kubes, P (1993) Ischemia-reperfusion in feline small intestine: a role for nitric oxide. American Journal of Physiology 264, G143G149.Google ScholarPubMed
Kubes, P & Granger, DN (1992) Nitric oxide modulates microvascular permeability. American Journal of Physiology 262, H611H615.Google ScholarPubMed
Kurose, I, Wolf, R, Grisham, MB & Granger, DN (1994) Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circulation Research 74, 376382.CrossRefGoogle ScholarPubMed
Lepoivre, M, Fieschi, F, Coves, J, Thelander, L & Fontecave, M (1991) Inactivation of ribonucleotide reductase by nitric oxide. Biochemical and Biophysical Research Communications 179, 442448.CrossRefGoogle ScholarPubMed
Ling, H, Edelstein, C, Gengaro, P, Meng, X, Lucia, S, Knotek, M, Wangsiripaisan, A, Shi, Y & Schrier, R (1999) Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. American Journal of Physiology F383F390.Google ScholarPubMed
Lorente, JA, Landin, L, DePablo, R, Renes, R & Liste, D (1993a) L-arginine pathway in the sepsis syndrome. Critical Care Medicine 21, 12871295.CrossRefGoogle ScholarPubMed
Lorente, JA, Landin, L, Renes, R, DePablo, R, Jorge, P, Rodena, E & Liste, D (1993b) Role of nitric oxide in the hemodynamic changes of sepsis. Critical Care Medicine 21, 759767.CrossRefGoogle ScholarPubMed
Lowenstein, CJ, Dinerman, JL & Snyder, SH (1994) Nitric oxide: a physiologic messenger. Annals of Internal Medicine 120, 227237.CrossRefGoogle ScholarPubMed
Mendez, C, Jurkovich, GJ, Garcia, I, Davis, D, Parker, A & Maier, RV (1997) Effects of an immune-enhancing diet in critically injured patients. The Journal of Trauma 42, 933941.CrossRefGoogle ScholarPubMed
Mendez, C, Jurkovich, GJ, Wener, MH, Garcia, I, Mays, M & Maier, RV (1996) Effects of supplemental dietary arginine, canola oil, and trace elements on cellular immune function in critically injured patients. Shock 6, 712.CrossRefGoogle ScholarPubMed
Mishima, S, Xu, DZ & Deitch, EA (1999) The increase in endotoxin-induced mucosal permeability is related to increased nitric oxide synthase activity utilizing the Ussing chamber. Critical Care Medicine 27, 880886.CrossRefGoogle Scholar
Mishima, S, Xu, DZ & Lu, Q (1997) Bacterial translocation is inhibited in iNOS knock-out mice after endotoxin challenge but not in a model of bacterial overgrowth. Archives of Surgery 132, 11901195.CrossRefGoogle ScholarPubMed
Moncada, S & Higgs, A (2001) The L-arginine-nitric oxide pathway. New England Journal of Medicine 329, 20022012.Google Scholar
Moncada, S, Palmer, RMJ & Higgs, EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacology Review 43, 109142.Google ScholarPubMed
Moore, FA, Moore, EE, Kudsk, KA, Brown, RO, Bower, RH, Koruda, MJ, Baker, CC & Barbul, A (1994) Clinical benefits of an immune-enhancing diet for early postinjury enteral feeding. The Journal of Trauma 37, 607614.CrossRefGoogle ScholarPubMed
Navaratnam, N, Morris, SE & Traber, DL (1990) Endotoxin (LPS) increases mesenteric vascular resistance (MVR) and bacterial translocation (BT). Journal of Trauma 30, 11041113.CrossRefGoogle ScholarPubMed
Nelson, LD (1998) Death knell for parenteral nutrition?. Critical Care Medicine 26, 4.CrossRefGoogle ScholarPubMed
Nirgiotis, JG, Hennessey, PJ & Andrassy, RJ (1991) The effects of an arginine-free enteral diet on wound healing and immune function in the postsurgical rat. Journal of Pediatric Surgery 26, 936941.CrossRefGoogle ScholarPubMed
Oxman, AD & Guyatt, GH (1992) Apples, oranges and fish: A consumer’s guide to subgroup analyses. Annals of Internal Medicine 116, 7884.CrossRefGoogle Scholar
Park, J, Chang, S, Lee, K & Shin, S (1996) Protective effect of nitric oxide in an endotoxin-induced septic shock. American Journal of Surgery 171, 340345.CrossRefGoogle Scholar
Petros, A, Lamb, G, Leone, A, Moncada, S, Bennett, D & Vallance, P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovascular Research 28, 3439.CrossRefGoogle ScholarPubMed
Radomski, MW, Palmer, RM & Moncada, S (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proceedings of the National Academy of Sciences USA 87, 51935196.CrossRefGoogle ScholarPubMed
Reinhardt, GF, Myscofski, JW & Wilkens, DB (1980) Incidence and mortality of hypoalbuminemic patients in hospitalized veterans. Journal of Parenteral and Enteral Nutrition 4, 357359.CrossRefGoogle ScholarPubMed
Rettura, G, Padawer, J, Barbul, A, Levenson, SM & Seifter, E (1979) Supplemental arginine increases thymic cellularity in normal and murine sarcoma virus-inoculated mice and increases the resistance to murine sarcoma virus tumor. Journal of Parenteral and Enteral Nutrition 14, 409416.CrossRefGoogle Scholar
Reynolds, JV, Daly, JM, Shou, J, Sigal, R, Ziegler, MM & Naji, A (1990) Immunologic effects of arginine supplementation in tumor-bearing and non-tumor-bearing hosts. Annals of Surgery 211, 202210.CrossRefGoogle ScholarPubMed
Reynolds, JV, Daly, JM, Zhang, S, Evantash, E, Shou, J, Sigal, R & Ziegler, MM (1988) Immunomodulatory mechanisms of arginine. Surgery 104, 142151.Google ScholarPubMed
Rixen, D, Siegel, JH & Espina, N (1997) Plasma nitric oxide on posttrauma critical illness: A function of sepsis and the physiologic state severity classification quantifying the probability of death. Shock 7, 1728.CrossRefGoogle ScholarPubMed
Ross Products Division of Abbott Laboratories: Comparison of Option One and a Polymeric Enteral Feeding: Effect on Length of Stay and Clinical and Immune Parameters. Study Protocol. (1996).Google Scholar
Ruetten, H, Southan, GJ, Abate, A & Thiermermann, C (1996) Attenuation of endotoxin-induced multiple organ dysfunction by 1-amino-2-hydroxy-guanidine, a potent inhibitor of inducible nitric oxide synthase. British Journal of Pharmacology 118, 261270.CrossRefGoogle ScholarPubMed
Saffle, JR, Wiebke, G, Jennings, K, Morris, SE & Barton, RG (1997) Randomized trial of immune-enhancing enteral nutrition in burn patients. The Journal of Trauma 42, 793802.CrossRefGoogle ScholarPubMed
Salzman, AL (1995) Nitric oxide in the gut. New Horizons 3, 3345.Google ScholarPubMed
Salzman, AL, Denenber, AG & Ueta, I (1996) Induction and activity of nitric oxide synthase in cultured human intestinal epithelial monolayers. American Journal of Physiology 270, G565G573.Google ScholarPubMed
Salzman, AL, Menconi, JM & Unno, N (1995) Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. American Journal of Physiology 268, G361G373.Google ScholarPubMed
Schilling, J, Cakmakci, M, Battig, U & Geroulanos, S (1993) A new approach in the treatment of hypotension in human septic shock by NG-monomethyl-L-arginine, an inhibitor of the nitric oxide synthase. Intensive Care Medicine 19, 227231.CrossRefGoogle Scholar
Schmidt, HW, Hofmann, H & Ogilvie, P (1995) Regulation and dysregulation of constitutive nitric oxide syntheses types I and III. Current Topics in Microbiology and Immunology 196, 7586.Google Scholar
Shen, W, Hintze, TH & Wolin, MS (1995) Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 92, 35053512.CrossRefGoogle ScholarPubMed
Shen, W, Xu, X, Ochoa, M, Zhao, G, Wolin, MS & Hintze, TH (1994) Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circulation Research 75, 10861095.CrossRefGoogle ScholarPubMed
Shi, Y, Li, HQ & Shen, CK (1993) Plasma nitric oxide levels in newborn infants with sepsis. Journal of Pediatrics 123, 435438.CrossRefGoogle ScholarPubMed
Shoemaker, WC & Appel, PL (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. New England Journal of Medicine 331, 11611162.Google ScholarPubMed
Stadler, J, Curran, RD & Ochoa, JB (1994) Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitroin vivo. Archives of Surgery 126, 186191.CrossRefGoogle Scholar
Suchner, U, Kuhn, KS, Fürst, P (2000) The scientific basis of immunonutrition. Proceedings of the Nutrition Society 59, 553563.CrossRefGoogle ScholarPubMed
Suchner, U, Senftleben, U, Felbinger, T [Lawin, P, Peter, K and Prien, T, editor]. Münster, Stuttgart: Georg Thieme VerlagInternationales Symposium über aktuelle Probleme der Notfallmedizin und Intensivtherapie pp. 178–205.Google Scholar
Szabo, C (1995) Alteration in nitric oxide production in various forms of circulatory shock. New Horizons 3, 232.Google ScholarPubMed
Thiermermann, C (1994) Role of the L-Arginine-nitric oxide pathway in circulatory shock. Advances in Pharmacology 28, 4579.CrossRefGoogle Scholar
Unno, N, Menconi, MJ & Smith, M (1995) Nitric oxide mediates interferon-gamma-induced hyperpermeability in cultured human intestinal epithelial monolayers. Critical Care Medicine 23, 11701176.CrossRefGoogle ScholarPubMed
Unno, N, Menconi, MJ & Smith, M (1997b) Hyperpermeability of intestinal epithelial monolayers is induced by NO: Effect of low extracellular pH. American Journal of Physiology 272, G923G934.Google ScholarPubMed
Unno, N, Wang, H & Menconi, MJ (1997a) Inhibition of inducible nitric oxide synthase ameliorates lipopolysaccharide-induced gut mucosal barrier dysfunction in rats. Gastroenterology 113, 12461257.CrossRefGoogle Scholar
Wang, Y, Lawson, JA & Jaeschke, H (1998) Differential effect of 2-aminoethyl-isothiourea, an inhibitor of the inducible nitric oxide synthase, on microvascular blood flow and organ injury in models of hepatic ischemia-reperfusion and endotoxemia. Shock 10, 2025.CrossRefGoogle ScholarPubMed
Wera, I, Jaccard, C & Corradin, SB (1997) Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: Comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Critical Care Medicine 25, 607613.CrossRefGoogle Scholar
Whittle, BJR, Lopez-Belmonte, J & Moncada, S (1990) Regulation of gastric mucosal integrity by endogenous nitric oxide: Interactions with prostanoids and sensory neuropeptides in the rat. British Journal of Pharmacology 99, 607611.CrossRefGoogle ScholarPubMed
Wilson, DF, Mokashi, A, Chugh, D, Vinogradov, S, Osanai, S & Lahiri, S (1994) The primary oxygen sensor of the cat carotid body is cytochrome a3 of the mitochondrial respiratory chain. FEBS Letters 12, 351(3)–370-4.Google Scholar
Windsor, JA & Hill, GL (1988) Risk factors for postoperative pneumonia. The importance of protein depletion. Annals of Surgery 208, 209214.CrossRefGoogle ScholarPubMed
Wink, DA, Kasprzak, KS, Maragos, CM, Elespuru, RK, Misra, M, Dunams, TM, Cebula, TA, Koch, WH, Andrews, AW, Allen, JS & Keefer, LK (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254, 10011003.CrossRefGoogle ScholarPubMed
Xu, D, Qi, L, Guillory, D, Cruz, N, Berg, R & Deitch, EA (1993) Mechanisms of endotoxin-induced intestinal injury in a hyperdynamic model of sepsis. Journal of Trauma 34, 676683.CrossRefGoogle Scholar
Yusuf, S, Wittes, J, Probstfiel, J & Tyroler, HA (1991) Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials. Journal of the American Medical Association 266, 9398.CrossRefGoogle ScholarPubMed
Zaloga, GP (1998) Immune-enhancing enteral diets: Where’s the beef? Critical Care Medicine 25, 11431146.CrossRefGoogle Scholar
Zedler, S, Bone, RC & Baue, AE (1999) T cell reactivity and its protective role in immunosuppression after burns. Critical Care Medicine 27, 6672.CrossRefGoogle Scholar