Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T02:50:09.341Z Has data issue: false hasContentIssue false

Glutathione peroxidase activity and erythrocyte stability in calves differing in selenium and vitamin E status

Published online by Cambridge University Press:  09 March 2007

R. C. Siddons
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen, AB2 9SB
C. F. Mills
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen, AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Glutathione peroxidase activity (EC1.11.1.9) and erythrocyte stability were measured in Friesian bull calves which were given for 36 weeks semi-purified diets either adequate or low in selenium or vitamin E or both.

2. Dietary Se or vitamin E content had no effect on growth rate and haematological vaiues. None of the calves exhibited clinical deficiency symptoms and serum aspartate amino transferase (EC 2.6.1.1) and creatine phosphokinase (EC 2.7.3.2) activities remained normal. Heart and skeletal muscles of all calves appeared macroscopically and microscopically normal at autopsy.

3. Glutathione peroxidase activity in plasma, blood and other tissues, except the testis, was significantly lower in calves receiving low dietary Se but was independent of dietary vitamin E content.

4. Plasma vitamin E levels decreased rapidly and to very low levels in calves given low vitamin E diets irrespective of the Se content of the diet.

5. A low dietary vitamin E intake increased the susceptibility of erythrocytes to auto- and peroxidative haemolysis whereas a low Se intake in the presence of adequate vitamin E did not. However, erythrocytes from calves receiving low Se and low vitamin E were more susceptible to peroxidative haemolysis than erythrocytes from calves receiving low vitamin E and adequate Se. The effect of dietary vitamin E content on osmotic haemolysis induced by hypotonic saline was variable.

6. The results suggest that measurement of blood glutathione peroxidase activity and the susceptibility of erythrocytes to auto- or peroxidative haemolysis could be used for the differential diagnosis of subclinical Se and vitamin E deficiency in ruminants.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1968

References

Agricultural Research Council (1979). Nutrient Requirements of Farm Livestock, III Ruminants (2nd edn). London: Agricultural Research Council.Google Scholar
Allen, W. M., Bradley, R., Berrett, S., Parr, W. H., Swannack, K., Barton, C. R. Q. & MacPhee, A. (1975). Br. vet. J. 131, 292.CrossRefGoogle Scholar
Allen, W. M., Parr, W. H., Anderson, P. H., Berrett, S., Bradley, R. & Patterson, D. S. (1975). Vet. Rec. 96, 360.CrossRefGoogle Scholar
Anderson, P. H., Bradley, R., Berrett, S. & Patterson, D. S. P. (1977). Br. vet. J. 133, 160.CrossRefGoogle Scholar
Andrews, E. D., Hartley, W. J. & Grant, A. B. (1968). N.Z. Vet. J. 16, 3.CrossRefGoogle Scholar
Bieri, J. G. & Poukka, R. K. H. (1970). J. Nutr. 100, 557.CrossRefGoogle Scholar
Blaxter, K. L. (1962). Proc. Nutr. Soc. 21, 211.CrossRefGoogle Scholar
Blaxter, K. L. & Sharman, G. A. M. (1953). Nature, Lond. 172, 1006.CrossRefGoogle Scholar
Boyd, J. W. (1968). Br. J. Nutr. 22, 411.CrossRefGoogle Scholar
Brin, M., Horn, L. R. & Barker, M. O. (1974). Am. J. clin. Nutr. 27, 945.CrossRefGoogle Scholar
Brown, D. G. & Burk, R. F. (1973). J. Nutr. 103, 102.CrossRefGoogle Scholar
Chow, C. K. & Tappel, A. L. (1974). J. Nutr. 104, 444.CrossRefGoogle Scholar
Dacie, J. V. & Lewis, S. M. (1968). Practical Haematology, (4th edn). London: Churchill.Google Scholar
Dickie, A. C., Gibson, P. F. & Albert-Recht, F. (1970). Ann. clin. Biochem. 7, 158.CrossRefGoogle Scholar
Draper, H. H. & Csallany, A. S. J. (1969). J. Nutr. 98, 390.CrossRefGoogle Scholar
Flohe, L., Gunzler, W. A. & Schook, H. H. (1973). F.E.B.S. Lett. 32, 132.CrossRefGoogle Scholar
Hafeman, D. G., Sunde, R. A. & Hoekstra, W. G. (1974). J. Nutr. 104, 580.CrossRefGoogle Scholar
Hashim, S. A. & Schutteringer, G. R. (1966). Am. J. clin. Nutr. 19, 137.CrossRefGoogle Scholar
Hill, C. H. (1974). J. Nutr. 104, 593.CrossRefGoogle Scholar
Hoffman, I., Jenkins, K. J., Meranger, J. C. & Pidgen, W. J. (1973). Can. J. Anim. Sci. 53, 61.CrossRefGoogle Scholar
Holmes, J. H. G., Ashmore, C. R., Robinson, D. W., Finn, J. P. & O'Dell, J. (1972). Vet. Rec. 90, 625.CrossRefGoogle Scholar
Horn, L. R., Barker, M. O., Reed, G. & Brin, M. (1974). J. Nutr. 104, 192.CrossRefGoogle Scholar
Jenkins, K. J. & Hidiroglou, M. (1972). Can. J. Anim. Sci. 52, 591.CrossRefGoogle Scholar
Jensen, L. S. (1975). J. Nutr. 105, 769.CrossRefGoogle Scholar
Johnston, W. S. & Murray, I. S. (1975). Vet. Rec. 97, 176.CrossRefGoogle Scholar
Kursa, J. & Kroupova, V. (1976). Res. vet. Sci. 20, 97.CrossRefGoogle Scholar
Lawrence, R. A. & Burk, R. F. (1978). J. Nutr. 108, 211.CrossRefGoogle Scholar
Lineweaver, H. & Burk, D. (1934). J. Am. chem. Soc. 56, 658.CrossRefGoogle Scholar
McCoy, K. E. & Weswig, P. H. (1969). J. Nutr. 98, 383.CrossRefGoogle Scholar
Miller, R. G. (1966). Simultaneous Statistical Inference. New York: McGraw-Hill Book Company Inc.Google Scholar
Muth, O. H., Oldfield, J. E., Remmert, L. F. & Schubert, J. R. (1958). Science, N. Y. 128, 1090.CrossRefGoogle Scholar
NAS-NRC (1976). Nat. Acad. Sci. Nat. Res. Counc. Nutrient requirements of beef cattle. Washington DC: NAS, NRC.Google Scholar
Oh, S. H., Ganther, H. E. & Hoekstra, W. G. (1974). Biochemistry 13, 825.Google Scholar
Oh, S. H., Pope, A. L. & Hoekstra, W. G. (1976). J. Anim. Sci. 42, 984.CrossRefGoogle Scholar
Oh, S. H., Sunde, R. A., Pope, A. L. & Hoekstra, W. G. (1976). J. Anim. Sci. 42, 977.CrossRefGoogle Scholar
Paglia, D. E. & Valentine, W. N. (1967). J. Lab. clin. Med. 70, 158.Google Scholar
Pederson, N. D., Whanger, P. D. & Weswig, P. H. (1975). Nutr. Rep. Int. 11, 429.Google Scholar
Poukka, R. & Oksanen, A. (1972). Br. J. Nutr. 27, 327.CrossRefGoogle Scholar
Rose, C. S. & Gyorgy, P. (1950). Proc. Soc. exp. Biol. Med. 74, 411.CrossRefGoogle Scholar
Rotruck, J. T., Pope, A. L., Ganther, H. E. & Hoekstra, W. G. (1972). J. Nutr. 102, 689.CrossRefGoogle Scholar
Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. & Hoekstra, W. G. (1973). Science, N. Y. 179, 588.CrossRefGoogle Scholar
Rumsey, T. S. (1975). Feedstuffs 17, 30.Google Scholar
Schwarz, K. & Folz, C. M. (1957). J. Am. chem. Soc. 79, 3293.Google Scholar
Sharman, G. A. M. (1954). Vet. Rec. 66, 275.Google Scholar
Shorland, F. B., Weenink, R. O. & Johns, A. T. (1955). Nature, Lond. 175, 1129.CrossRefGoogle Scholar
Sorensen, P. H. (1973). Acta agric. Scand. suppl. 19, 177.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statistics. New York: McGraw-Hill Book Company Inc.Google Scholar
Tappel, A. L. (1974). Am. J. clin. Nutr. 27, 960.CrossRefGoogle Scholar
Thompson, J. N. & Scott, M. L. (1969). J. Nutr. 97, 335.CrossRefGoogle Scholar
Thompson, J. N. & Scott, M. L. (1970). J. Nutr. 100, 797.CrossRefGoogle Scholar
Thompson, R. H., McMurray, C. H. & Blanchflower, W. J. (1976). Res. vet. Sci. 20, 229.CrossRefGoogle Scholar
Tove, S. B. (1960). J. Dairy Sci. 43, 1354.CrossRefGoogle Scholar
Trinder, N., Hall, R. J. & Penton, C. P. (1973). Vet. Rec. 93, 641.CrossRefGoogle Scholar
Whanger, P. D., Weswig, P. H., Schmitz, J. A. & Oldfield, J. E. (1977). J. Nutr. 107, 1298.CrossRefGoogle Scholar