Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:31:43.839Z Has data issue: false hasContentIssue false

Effect of zinc deficiency on the pregnant ewe and developing foetus

Published online by Cambridge University Press:  09 March 2007

David G. Masters
Affiliation:
Department of Animal Science and Production, University of Western Australia, Nedlands, Western Australia 6009, Australia
R. J. Moir
Affiliation:
Department of Animal Science and Production, University of Western Australia, Nedlands, Western Australia 6009, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Mature Merino ewes were given either a low-zinc diet (4 mg/kg) or an adequate-Zn diet (50 mg/kg) for all or part of pregnancy.

2. The ewes consuming the low-Zn diet consumed 25% less feed than those given the adequate-Zn diet during the last 115 d of pregnancy.

3.Zn concentration in the plasma of Zn-deficient pregnant ewes declined from 0·7 to 0·3 mg/1.

4. The lambs born to Zn-deficient ewes weighed less and had reduced concentrations ofZn or less total Zn, or both, in the whole carcass, liver and pancreas.

5. A reduction in activity of alkaline phosphatase (EC 3.1.3.1) in the liver and a slight reduction in thymidine kinase (EC 2.7.1.21) activity in the thymus was also observed in Zn-deficient lambs.

6. The Zn-deficient ewes deposited approximately 63 mg Zn into each single-born lamb;this indicates that during the last third of pregnancy the developing foetuses were accumulating the equivalent of 35% of the total dietary Zn intake of the ewes.

Type
Paper on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Apgar, J. (1968). Am. J. Physiol. 215, 160.CrossRefGoogle Scholar
Apgar, J., House, W. A. & Welch, R. M. (1981). In Trace Element Metabolism In Man and Animals, vol. 4, p. 268. [McC.Howell, J. M., Gawthorne, J. M. and White, C. L., editors]. Canberra: Australian Academy of Science.CrossRefGoogle Scholar
Apgar, J. & Travis, H. F. (1979). J. Anim. Sci. 48, 1234.CrossRefGoogle Scholar
Davies, N. T. & Williams, R. B. (1977). Br. J. Nutr. 38, 417.CrossRefGoogle Scholar
Duncan, J. R. & Hurley, L. S. (1978). Proc. Soc. exp. Biol. Med. 159, 39.CrossRefGoogle Scholar
Egan, A. R. (1972). Aust. J. exp. Agric. Anim. Husb. 12, 131.CrossRefGoogle Scholar
Hansard, S. L. & Mohammed, A. S. (1968). J. Anim. Sci. 27, 807.CrossRefGoogle Scholar
Hurley, L. S. & Cosens, G. (1974). In Trace Element Metabolism in Animals, vol. 2, p. 516. [Hoekstra, W. G.Suttie, J. W.Ganther, H. E. and Mertz, W. editors]. Baltimore: University Park Press.Google Scholar
Hurley, L. S., Sucher, K., Story, D. & Cosens, G. (1973). J. Nutr. 103, xxv.CrossRefGoogle Scholar
Hurley, L. S. & Swenerton, H. (1966). Proc. Soc. exp. Biol. Med. 123, 692.CrossRefGoogle Scholar
Hurley, L. S. & Swenerton, H. (1971). J. Nutr. 107, 597.CrossRefGoogle Scholar
Hurley, L. S. & Tao, S. (1972). Am. J. Physiol. 222, 322.CrossRefGoogle Scholar
Kirchgessner, M., Schwarz, W. A. & Roth, H. P. (1978). In Trace Element Metabolism in Man and Animals, vol. 3, p. 116 [Kirchgessner, M. editor]. Freising-Weihenstephan: Institut fur Ernahrungsphysiologie, Technische Universitat Munchen.Google Scholar
Lowry, O. H., Roseborough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Luecke, R. W., Olman, M. E. & Baltzer, B. V. (1968). J. Nutr. 94, 344.Google Scholar
Luecke, R. W., Simonel, C. E. & Fraker, P. J. (1978). J. Nutr. 108, 881.CrossRefGoogle Scholar
Masters, D. G. (1981). In Trace Element Metabolism in Man and Animals, vol. 4, p. 331 [McC.Howell, J., Gawthorne, J. W. and White, C. L., editors]. Canberra: Australian Academy of Science.CrossRefGoogle Scholar
Masters, D. G. & Fels, H. (1980). Biol. Trace Element Res. 2, 281.CrossRefGoogle Scholar
Masters, D. G. & Moir, R. J. (1980). Aust. J. exp. Agric. Anim. Husb. 20, 547.CrossRefGoogle Scholar
Mayland, H. F., Rosenau, R. C. & Florence, A. R. (1980). J. Anim. Sci. 51, 966.CrossRefGoogle Scholar
Mills, C. F., Dalgarno, A. C., Williams, R. B. & Quarterman, J. (1967). Br. J. Nutr. 21, 751.CrossRefGoogle Scholar
Mills, C. F., Quarterman, J., Chesters, J. K., Williams, R. B. & Dalgarno, A. L. (1969). Am. J. Clin. Nutr. 22, 1240.CrossRefGoogle Scholar
Sawyer, G. J. (1978). The influence of high temperatures on reproduction in the Merino ewe. PhD Thesis, University of Western Australia.Google Scholar
Schinckel, P. G. (1963). Wld. Conf. Anim. Prod., vol. 1, p. 199. Rome: European Association for Animal Production.Google Scholar
Short, R. V. (1972). In Reproduction in Mammals, vol. 3, p. 42 [Austin, C. R. and Short, R. V., editors]. London: Cambridge University Press.Google Scholar
Suttle, N. F. (1979). Br. J. Nutr. 42, 89.CrossRefGoogle Scholar
Suttle, N. F., Lloyd Davies, H. & Field, A. C. (1982). Br. J. Nutr. 47, 105.CrossRefGoogle Scholar
Underwood, E. J. (1977). Trace Elements in Human and Animal Nutrition, 4th ed., p. 196. London and New York: Academic Press.Google Scholar
Underwood, E. J. & Somers, M. (1969). Aust. J. agric. Res. 20, 889.CrossRefGoogle Scholar
Williams, R. B. & Bremner, I. (1976). Proc. Nutr. Soc. 35, 86A, 87A, 88A.Google Scholar
Williams, R. B., Demertzis, P. & Mills, C. F. (1973). Proc. Nutr. Soc. 32, 3A.Google Scholar
Williams, R. B., McDonald, I. & Bremner, I (1978). Br. J. Nutr. 40, 377.CrossRefGoogle Scholar
Witschi, H. P. (1970). Biochem. J. 120, 623.Google Scholar