Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T20:52:14.206Z Has data issue: false hasContentIssue false

The effect of molybdenum levels in sorghum (Sorghum vulgare Pers.) on uric acid and copper excretion in man

Published online by Cambridge University Press:  09 March 2007

Y. G. Deosthale
Affiliation:
National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania, Hyderabad-500007, India
C. Gopalan
Affiliation:
National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania, Hyderabad-500007, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of various dietary levels of molybdenum on uric acid and copper excretion was studied in experiments with four adult men given diets based on two sorghum varieties (Sorghum vulgare Pers.) differing widely in Mo content.

2. With a Mo intake of 160, 540 or 1540 μg/d the urinary excretion of uric acid was unaltered.

3. The excretion of Cu in urine increased with increasing Mo intake.

4. Cu-balance studied with high- and low-Mo diets showed that with a high-Mo diet urinary Cu excretion increased but faecal Cu was unaffected. This indicates that dietary Mo had no effect on Cu absorption.

5. The high serum concentration of Cu with diets high in Mo indicates that Mo either mobilizes tissue Cu or inhibits Cu uptake, or both.

Type
Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Davis, G. K. (1950). In Symposium on Copper Metabolism p. 216. [McElroy, W. D. and Glass, B. editors]. Baltimore: Johns Hopkins Press.Google Scholar
Dick, A. T. (1956). In Inorganic Nitrogen Metabolism p. 445 [McElroy, W. D. and Glass, B. editors]. Baltimore: Johns Hopkins Press.Google Scholar
Dowdy, R. P. & Matrone, G. (1968 a). J. Nutr. 95, 191.CrossRefGoogle Scholar
Dowdy, R. P. & Matrone, G. (1968 b). J. Nutr. 95, 197.CrossRefGoogle Scholar
Dowdy, R. P., Kunz, G. A. & Sauberlich, H. E. (1969). J. Nutr. 99, 491.CrossRefGoogle Scholar
Glorgio, A. J., Cartwright, G. E. & Wintrobe, M. M. (1964). Am. J. clin. Path. 41, 22.CrossRefGoogle Scholar
Gubler, C. J., Lahey, M. E., Ashenbrucker, J., Cartwright, G. E. & Wintrobe, M. M. (1952). J. biol.Chem. 196, 209.CrossRefGoogle Scholar
Hart, L. I. & Bray, R. C. (1967). Biochim. biophys. Acta 146, 611.CrossRefGoogle Scholar
Hawk, P. R., Oser, R. L. & Summerson, W. H. (1954). Practical Physiological Chemistry 13th ed., p. 947. New York: McGraw Hill Book Company Inc.Google Scholar
Kovalsky, V. V. & Vorotnitskaya, I. E. (1970). In Trace Element Metabolism in Animals p. 176 [Mill, C. F., editor]. Edinburgh and London: Livingstone.Google Scholar
Kovalsky, V. V., Yaroraya, G. A. & Shmavonyan, D. M. (1961). Zh. obshch. Biol. 22, 179.Google Scholar
Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., Dunavant, B. G. & Davis, G. K. (1969). J. Nutr. 99, 177.CrossRefGoogle Scholar
Patwardhan, V. N. (1961). Nutrition in India 3rd ed., p. 413. Bombay: The Indian Journal of Medical Sciences.Google Scholar
Sandell, E. B. (1959). Colorimetric Determination of Traces of Metals 3rd ed., p. 640. New York: Interscience Publishers Inc.Google Scholar
Schroeder, H. A., Balassa, J. J. & Tipton, I. H. (1970). J. chron. Dis. 23, 481.CrossRefGoogle Scholar
Undermood, E. J. (1971). Trace Elements in Human and Animal Nutrition 3rd ed., p. 116. New York: Academic Press.Google Scholar
Vasantgadkar, P. S. & Tulpule, P. G. (1963). J. postgrad. Med. 9, 6.Google Scholar
Vasantgadltar, P. S., Venkatachalam, P. S. & Tulpule, P. G. (1963). Am. J. clin. Nutr. 12, 150.CrossRefGoogle Scholar