Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T20:40:50.689Z Has data issue: false hasContentIssue false

The effect of diet on the compositions of the triglycerides and unesterified fatty acids isolated from the plasma, liver and adipose tissues of rabbits

Published online by Cambridge University Press:  09 March 2007

J. H. Moore
Affiliation:
National Institute for Research in Dairying, Shinjield, Reading
D. L. Williams
Affiliation:
National Institute for Research in Dairying, Shinjield, Reading
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Groups of male rabbits (ten to thirteen per group survived) were given ad lib. a diet consisting of 80 parts of a low-fat basal diet to which were added: for group I, 20 parts maize oil; for group 2, 20 parts butterfat; for group 3, 10parts maize oil and and 10parts butter- fat; for group 4, 0.47 parts maize oil and 43.1 parts wheat starch; and for group 5, 10.2parts maize oil and 21.6 parts wheat starch. The animals in group 6 were givenan ordinary com- mercial rabbit diet. 2. The rabbits were given the various diets for 38 weeks, after which a sample of blood was taken. The rabbits were then killed and the liver and a sample of perine- phric adipose tissue were removed from each animal. The plasma, liver and adipose tissue lipids werefractionated on columns of Florisil and the fatty acid compositions of the tri- glyceride and unesterified fatty acid fractions were determined by gas-liquid chromatography.

3. The effects of the different diets on the composition of the unesterifiedfatty acids in the plasma were very similar to the effects of the diets on the fatty acid composition of the plasma triglycerides, but in the plasma unesterified fatty acids the concentration of stearic acid was consistently higher and the concentration of linoleic acid was consistently lower than in the plasma triglycerides. 4. There appeared to be a positive rectilinear relationship between the concentration of stearic acid in the plasma triglycerides and the concentration of triglycerides in the plasma. 5. In the triglycerides of the plasma, the concentrations of palmitic and stearic acids were consistently greater and the concentration of linoleic acid was consistently less than the corresponding concentrations of these fatty acids in the triglycerides of the adipose tissues. In the two groups of rabbits given low-fat diets the fatty acid composition of the liver trigly- cerides was almost identical with that of the plasma triglycerides. 6. In each of the six groups of rabbits the composition of the unesterified fatty acids in the plasma was identical with that of the unesterified fatty acids in the adipose tissues. Inthe unesterified fatty acids of the liver the concentrations of linoleic andarachidonic acids were consistently greater and the concentrations of myristic, palmitic and palmitoleic acids were consistently less than the corresponding concentrations of these acids in the unesterified fatty acids of the plasma and adipose tissues. 7. The results of this investigation are discussedin the light of recent con-cepts on the metabolic relationships between the unesterified fatty acids and triglycerides of the liver, plasma and adipose tissues.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

Albrink, M. J. (1959). J. Lipid Res. 1, 53.CrossRefGoogle Scholar
Arvidson, G. &Olivecrona, T. (1962). Acta physiol. scand. 55, 303.CrossRefGoogle Scholar
Bally, P. R., Cahill, G. F. Jr., Leboeuf, B. &Renold, A. E. (1960). J. biol. Chem. 235, 333.CrossRefGoogle Scholar
Bezman, A, Felts, J. M. &Havel, R. J. (1962). J. Lipid Res. 3, 427.CrossRefGoogle Scholar
Borgström, B. &Jordan, P. (1959). Acta Soc. Med. upsal. 64, 185.Google Scholar
Borgström, B. &Olivecrona, T. (1961). J. Lipid Res. 2, 263.CrossRefGoogle Scholar
Bragdon, J. H. & Gordon, R. S. Jr. (1958). J. clin. Invest. 37, 574.CrossRefGoogle Scholar
Carroll, K. K. (1961). J. Lipid Res. 2, 135.CrossRefGoogle Scholar
Duncan, D. B. (1955). Biometrics, 11, I.CrossRefGoogle Scholar
Engel, F. L. (1962). In Adipose Tissue as an Organ, p. 126. [KinsellL,. W. L,. W., editor.] Springfield, Ill.: C. C. Thomas.Google Scholar
Farquhar, J. W., Insull, W. Jr., Rosen, P., Stoffel, W. &Ahrens, E. H. Jr. (1959). Nutr. Rev. 17, Suppl..Google Scholar
Folch, J., Lees, M. &Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Freeman, N. K., Lindgren, F. T. & Nichols, A. V. (1963). In Progress in the Chemistry of Fats and Other Lipids. Vol. 6, p. 216. [Holman, R. T., Lundberg, W. O. &Malkin, T., editors.] Oxford: Pergamon Press.Google Scholar
Fredrickson, D. S. &Gordon, R. S. Jr. (1958). Physiol. Rev. 38, 585.CrossRefGoogle Scholar
Friedberg, S. J., Klein, R. F., Trout, D. L., Bogdonoff, M. D. & Estes, E. H. Jr. (1961). J. clin. Invest. 40, 1846.CrossRefGoogle Scholar
Gordon, R. S. Jr. (1957). J. clin. Invest. 36, 810.CrossRefGoogle Scholar
Gordon, R. S. Jr. & Cherkes, A. (1956). J. clin. Invest. 35, 206.CrossRefGoogle Scholar
Hagen, J. H. (1963). Biochem. Soc. Symp. no. 24, p. 159.Google Scholar
Havel, R. J. &Goldfien, A. (1961). J. Lipid Res. 2, 389.CrossRefGoogle Scholar
Hirsch, J., Farquhar, J. W., Ahrens, E. H. Jr., Peterson, M. L. &Stoffel, W. (1960). Am. J. clin. Nutr. 8, 499.CrossRefGoogle Scholar
Kay, R. E. &Entenman, C. (1961). J. biol. Chem. 236, 1006.CrossRefGoogle Scholar
Kramer, Y. K. (1956). Biometrics, 12, 307.CrossRefGoogle Scholar
Laurell, S. (1959). Acta physiol. scand. 47, 218.CrossRefGoogle Scholar
Margolis, S. &Vaughan, M. (1962). J. biol. Chem. 237, 44.CrossRefGoogle Scholar
Markscheid, L. &Shafrir, E. (1965). J. Lipid Res. 6, 247.CrossRefGoogle Scholar
Moore, J. H. (1962). J. Dairy Res. 29, 141.CrossRefGoogle Scholar
Moore, J. H. &Williams, D. L. (1963). Can. J. Biochem. Physiol. 41, 1821.CrossRefGoogle Scholar
Moore, J. H. &Williams, D. L. (1964 a). Br. J. Nutr. 18, 253.CrossRefGoogle Scholar
Moore, J. H. &Williams, D. L. (1964 b). Br. J. Nutr. 18, 431.CrossRefGoogle Scholar
Moore, J. H. &Williams, D. L. (1964 c). Br. J. Nutr. 18, 603.CrossRefGoogle Scholar
Moore, J. H. &Williams, D. L. (1964 d). Biochim. biophys. Acta, 84, 41.Google Scholar
Moore, J. H. &Williams, D. L. (1965). Br. J. Nutr. 19, 407.CrossRefGoogle Scholar
Nelson, G. J. &Freeman, N. K. (1959). J. biol. Chem. 234, 1375.CrossRefGoogle Scholar
Nestel, P. J. &Steinberg, D. (1963). J. Lipid Res. 4, 461.CrossRefGoogle Scholar
Raben, M. S. &Hollenberg, C. H. (1960). J. clin. Invest. 39, 435.CrossRefGoogle Scholar
Rodbell, M. (1960). J. biol. Chem. 235, 1613.CrossRefGoogle Scholar
Schoenheimer, R. &Rittenberg, D. (1936). J. biol. Chem. 114, 381.CrossRefGoogle Scholar
Schrade, W., Biegler, R. & Böhle, E. (1961). J. Atheroscler. Res. 1, 47.CrossRefGoogle Scholar
Stein, Y. &Shapiro, B. (1959). Am. J. Physiol. 196, 1238.CrossRefGoogle Scholar
Steinberg, D., aughan, M. &Margolis, S. (1960). J. biol. Chem. 235, PC 38.CrossRefGoogle Scholar
Steinberg, D., Vaughan, M., Margolis, S. &Karmen, A. (1960). Fedn Proc. Fedn Am. Socs exp. Biol. 19, 227.Google Scholar
Swell, L., Law, M. D., Schools, P. E. &Treadwell, C. R. (1961). J. Nutr. 75, 181.CrossRefGoogle Scholar
Vaughan, M. & Korn, E. D. (1962). In Adipose Tissue as an Organ, p. 173. [Kinsell, L. W., editor.] Springfield, Ill.: C. C. Thomas.Google Scholar
Wieland, O. &Suyter, M. (1957). Biochem. Z. 329, 320.Google Scholar