Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T06:49:53.334Z Has data issue: false hasContentIssue false

Dose-dependent bone-sparing effects of dietary isoflavones in the ovariectomised rat

Published online by Cambridge University Press:  09 March 2007

Christel Picherit
Affiliation:
Groupe Ostéoporose, Laboratoire des Maladies Mètaboliques et Micronutriments (U3M), I.N.R.A. Clermont-Ferrand/Theix, 63122 St Genès Champanelle, France
Brigitte Chanteranne
Affiliation:
Groupe Ostéoporose, Laboratoire des Maladies Mètaboliques et Micronutriments (U3M), I.N.R.A. Clermont-Ferrand/Theix, 63122 St Genès Champanelle, France
Catherine Bennetau-Pelissero
Affiliation:
ENITA de Bordeaux, 33175 Gradignan cedex, France
Marie-Jeanne Davicco
Affiliation:
Groupe Ostéoporose, Laboratoire des Maladies Mètaboliques et Micronutriments (U3M), I.N.R.A. Clermont-Ferrand/Theix, 63122 St Genès Champanelle, France
Patrice Lebecque
Affiliation:
Groupe Ostéoporose, Laboratoire des Maladies Mètaboliques et Micronutriments (U3M), I.N.R.A. Clermont-Ferrand/Theix, 63122 St Genès Champanelle, France
Jean-Pierre Barlet*
Affiliation:
Groupe Ostéoporose, Laboratoire des Maladies Mètaboliques et Micronutriments (U3M), I.N.R.A. Clermont-Ferrand/Theix, 63122 St Genès Champanelle, France
Véronique Coxam
Affiliation:
Groupe Ostéoporose, Laboratoire des Maladies Mètaboliques et Micronutriments (U3M), I.N.R.A. Clermont-Ferrand/Theix, 63122 St Genès Champanelle, France
*
*Corresponding author: Dr Jean-Pierre Barlet, fax +33 473 624638, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dose-dependent bone-sparing effects of dietary isoflavones (IF) were investigated in adult (7-month-old) Wistar rats. Forty animals were ovariectomised, allocated into four groups of ten rats each, and immediately treated orally with IF at 0 (OVX), 20 (IF20), 40 (IF40) or 80 (IF80) μg/g body weight per d for 91 d; ten sham-operated (SH) controls received the same diet without added IF. Animals were killed on day 91. Both femoral failure load and total femoral, diaphyseal or metaphyseal bone mineral densities (BMD) were lower in OVX animals than in SH animals. Urinary deoxypyridinoline (DPD) excretion, a marker of bone resorption, and plasma osteocalcin (OC) levels, a marker of osteoblast activity, were higher in OVX animals than in SH animals. Total femoral and diaphyseal BMD and femoral failure load were similar in IF-treated rats and SH rats. Although metaphyseal BMD in IF40 or IF80 rats was similar to that in SH rats, its value was lower in IF20 rats than in controls. The day 91 urinary DPD excretion in IF40 and IF80 rats, but not in IF20 rats, was similar to that in SH rats. Day 91 plasma OC concentrations in IF-treated rats were similar to day 45 values, but were decreased in OVX and SH rats. Thus, daily IF consumption prevented ovariectomy-induced bone loss, both by depressing bone resorption and stimulating osteoblast activity. Moreover, as only the highest IF level induced a weak uterotrophic activity, the optimal IF dose which preserves both cancellous and cortical bone, but exhibits no oestrogen-like effects on the uterus, was 40 μg/g body weight per d.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2001

References

Albright, F, Smith, PH & Richardson, A (1941) Postmenopausal osteoporosis: its clinical features. Journal of the American Medical Association 116, 24652474.CrossRefGoogle Scholar
Anderson, JJB, Ambrose, WW & Garner, SC (1998) Biphasic effects of genistein on bone tissue in the ovariectomized lactating rat model. Proceedings of the Society for Experimental Biology and Medicine 217, 345350.CrossRefGoogle Scholar
Anderson, JJB, Anthony, M, Messina, M & Garner, SC (1999) Effects of phytoestrogens on tissues. Nutrition Research Reviews 12, 75116.CrossRefGoogle Scholar
Arjmandi, BH, Alekel, L, Hollis, BW, Amin, D, Stacewiez-Sapuntzakis, M, Guo, P & Kukreja, SC (1996) Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. Journal of Nutrition 126, 161167.CrossRefGoogle Scholar
Arjmandi, BH, Birnbaum, R, Goyal, NV, Getlinger, MJ, Juma, S, Alekel, L, Hasler, CM, Drum, ML, Hollis, BW & Kukreja, SC (1998) Bone-sparing effect of soy protein in ovarian hormone-deficient rats is related to its isoflavone content. American Journal of Clinical Nutrition 68, S1364-S1368.CrossRefGoogle ScholarPubMed
Arjmandi, BH, Birnbaum, RS, Juma, S, Barengolts, E & Kukreja, SC (2000) The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanisms. Calcified Tissue International 66, 6165.CrossRefGoogle ScholarPubMed
Bennetau-Pelissero, C, Le Houèrou, C, Lamothe, V, Le Menn, F, Babin, P & Bennetau, B (2000) Synthesis of haptens and conjugates for ELISAs of phytoestrogens. Development of the immunological tests. Journal of Agricultural and Food Chemistry 48, 305311.CrossRefGoogle ScholarPubMed
Bennetts, HW, Underwood, EJ & Shier, FL (1946) A specific breeding problem of sheep on subterranean clover pastures in western Australia. Australian Veterinary Journal 22, 212.CrossRefGoogle ScholarPubMed
Bingham, SA, Atkinson, C, Liggins, J, Bluck, L & Coward, A (1998) Phyto-oestrogens: where are we now?. British Journal of Nutrition 79, 393406.CrossRefGoogle ScholarPubMed
Braden, AWH, Hart, NK & Lamberton, JA (1967) The oestrogenic activity and metabolism of certain isoflavones in sheep. Australian Journal of Agricultural Research 18, 335348.CrossRefGoogle Scholar
Butcher, RL, Collins, WE & Fugo, NW (1974) Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-β17 throughout the 4-day estrous cycle of the rat. Endocrinology 94, 17041708.CrossRefGoogle Scholar
Cook, JGH (1975) Factors influencing the assay of creatinine. Annals of Clinical Biochemistry 12, 219232.CrossRefGoogle ScholarPubMed
Fanti, P, Monier-Faugere, MC, Geng, Z, Schmidt, J, Morris, PE, Cohen, D & Malluche, HH (1998) The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporosis International 8, 274281.CrossRefGoogle ScholarPubMed
Garnero, P, Delmas, PD (1999) Utilité clinique des marqueurs du remodelage osseux dans l'ostéoporose (Clinical usefulness of bone remodelling makers in osteoporosis). In Ostéoporose: progrès dans le diagnostic et la prise en charge, (Osteoporosis: Progress in Diagnosis and Management) pp. 79101.[PJ, Meunier editor]. London: Marlin Dunitz.Google Scholar
Hiroi, H, Inoue, S, Watanabe, T, Goto, W, Orimo, A, Momoeda, M, Tsutsumi, O, Taketani, Y & Muramatsu, M (1999) Differential immunolocalization of estrogen receptor α and β in rat ovary and uterus. Journal of Molecular Endocrinology 22, 3744.CrossRefGoogle Scholar
Ishida, H, Uesugi, T, Hirai, K, Toda, T, Nukaya, H, Yokotsuka, K & Tsuji, K (1998) Preventive effects of the plant isoflavones, daidzin and genistin, on bone loss in ovariectomized rats fed a calcium-deficient diet. Biological and Pharmaceutical Bulletin 21, 6266.CrossRefGoogle Scholar
Ishimi, Y, Miyaura, C, Ohmura, M, Onoe, Y, Sato, T, Uchiyama, Y, Ito, M, Wang, X, Suda, T & Ikegama, S (1999) Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 140, 18931900.CrossRefGoogle ScholarPubMed
Kalu, DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone and Mineral 15, 175191.CrossRefGoogle ScholarPubMed
Kuiper, GGJM, Carlsson, B, Grandien, K, Enmark, E, Häggblad, J, Nilsson, S & Gustafsson, JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138, 863870.CrossRefGoogle ScholarPubMed
Kuiper, GGJM, Lemmen, JG, Carlsson, B, Corton, JC, Safe, SH, Van Der Saag, PT, Van Der Burg, B & Gustafsson, JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139, 42524263.CrossRefGoogle ScholarPubMed
Le Houérou, C, Bennetau-Pelissero, C, Lamothe, V, Le Menn, F, Babin, P & Bennetau, B (2000) Syntheses of novel hapten-protein conjugates for production of highly specific antibodies to formononetin, daidzein and genistein. Tetrahedron 56, 295301.CrossRefGoogle Scholar
Lim, SK, Won, YJ, Lee, HC, Huh, KB & Park, YS (1999) A PCR analysis of ERα and ERβ mRNA abundance in rats and the effect of ovariectomy. Journal of Bone and Mineral Research 14, 11891196.CrossRefGoogle ScholarPubMed
Magnusson, P, Larsson, L, Magnusson, M, Davie, MWJ & Sharp, CA (1999) Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. Journal of Bone and Mineral Research 14, 19261933.CrossRefGoogle ScholarPubMed
Miksicek, RJ (1994) Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. Journal of Steroid Biochemistry and Molecular Biology 49, 153160.CrossRefGoogle ScholarPubMed
Miller, SC, Bowman, BM & Jee, WSS (1995) Available animal models of osteopenia – small and large. Bone 17, S117S123.CrossRefGoogle ScholarPubMed
Mosekilde, L (1995) Assessing bone quality-animal models in preclinical osteoporosis research. Bone 17, S343-S352.CrossRefGoogle ScholarPubMed
Onoe, Y, Miyaura, C, Ohta, H, Nozawa, S & Suda, T (1997) Expression of estrogen receptor β in rat bone. Endocrinology 138, 45094512.CrossRefGoogle ScholarPubMed
Pastoureau, P, Chomel, A & Bonnet, J (1995) Specific evaluation of localized bone mass and bone loss in the rat using dual energy X-ray absorptiometry subregional analysis. Osteoporosis International 5, 143149.CrossRefGoogle ScholarPubMed
Picherit, C, Coxam, V, Bennetau-Pelissero, C, Kati-Coulibaly, S, Davicco, MJ, Lebecque, P & Barlet, JP (2000) Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. Journal of Nutrition 130, 16751681.Google ScholarPubMed
Potter, SM, Baum, JO, Teng, H, Stillman, RJ, Shay, NF & Erdman, JW (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. American Journal of Clinical Nutrition 68, 1375S-1379S.CrossRefGoogle ScholarPubMed
Robins, SP (1994) Biochemical markers for assessing skeletal growth. European Journal of Clinical Nutrition 48, S199-S209.Google ScholarPubMed
Rose, BS, Flatt, WP, Martin, RJ & Lewis, RD (1998) Whole body composition of rats determined by dual energy X-ray absorptiometry is correlated with chemical analysis. Journal of Nutrition 128, 246250.CrossRefGoogle ScholarPubMed
Santell, RC, Chen Chang, Y, Nair, MG & Helferich, WG (1997) Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. Journal of Nutrition 127, 263269.Google ScholarPubMed
Snedecor, GW & Cochran, WG (1967) Statistical Methods. 6th ed. Ames, IA: Iowa State University Press.Google Scholar
Taylor, M (1997) Alternatives to conventional hormone replacement therapy. Comparative Therapies 23, 514532.Google ScholarPubMed
Toda, T, Uesugi, T, Hirai, K, Nukaya, H, Tsuji, K & Ishida, H (1999) New 6-o-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-o-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet Biological and Pharmaceutical Bulletin 22, 11931201.Google Scholar
Turner, CH & Burr, CB (1993) Basic mechanical measurements of bone: a tutorial. Bone 14, 595608.CrossRefGoogle Scholar
Windahl, SH, Norgard, M, Kuiper, GGJM, Gustafsson, JA & Andersson, G (2000) Cellular distribution of estrogen receptor β in neonatal rat bone. Bone 26, 117121.CrossRefGoogle ScholarPubMed
Wronski, TJ & Yen, CF (1991) The ovariectomized rat as an animal model for postmenopausal bone loss Cells and Materials S69S74.Google Scholar