Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T01:27:01.488Z Has data issue: false hasContentIssue false

The digestion of pectin in the human gut and its effect on calcium absorption and large bowel function

Published online by Cambridge University Press:  09 December 2008

J. H. Cummings
Affiliation:
Dunn Clinical Nutrition Centre, Addenbrookes Hospital, Trumpington Street, Cambridge
D. A. T. Southgate
Affiliation:
Dunn Clinical Nutrition Centre, Addenbrookes Hospital, Trumpington Street, Cambridge
W. J. Branch
Affiliation:
Dunn Clinical Nutrition Centre, Addenbrookes Hospital, Trumpington Street, Cambridge
H. S. Wiggins
Affiliation:
Dunn Clinical Nutrition Centre, Addenbrookes Hospital, Trumpington Street, Cambridge
Hellen Houston
Affiliation:
MRC Gastroenterology Unit, Central Middlesex Hospital, LondonNW10
D. J. A. Jenkins
Affiliation:
MRC Gastroenterology Unit, Central Middlesex Hospital, LondonNW10
T. Jivraj
Affiliation:
Bacterial Metabolism Research Laboratory, Colindale Avenue, LondonNW9 5DX
M. J. Hill
Affiliation:
Bacterial Metabolism Research Laboratory, Colindale Avenue, LondonNW9 5DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of dietary fibre digestion in the human gut on its ability to alter bowel habit and impair mineral absorption has been investigated using the technique of metabolic balance.

2. Five healthy male students were studied for 9 weeks under controlled dietary conditions and during the last 6 weeks they took 36 g pectin/d. Bowel habit, transit through the gut, faecal fibre excretion, calcium balance and faecal composition were measured.

3. During the control period only 15% of the dietary fibre ingested was excreted in the stools and when pectin was added to the diet there was no increase in fibre excretion. Stool frequency and mean transit time were unchanged by pectin but stool wet weight increased by 33% and faecal excretion increased (%) for fatty acids 80, nitrogen 47, total dry matter 28 and bile acids 35. Ca balance remained unchanged.

4. It may be concluded from these results that dietary fibre is largely metabolized in the human gut and dietary pectin completely so. This could explain its lack of effect on bowel habit and Ca balance. Other changes in the faeces may be related to an increase in bacterial mass.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Bingham, S., McNeil, N. I. & Cummings, J. H. (1979). Am. J. clin. Nutr. (In the Press.)Google Scholar
Branch, W. J. & Cummings, J. H. (1978). Gut 19, 371.CrossRefGoogle Scholar
Burkitt, D. P., Walker, A. R. P. & Painter, N. S. (1972). Lancet ii, 1408.Google Scholar
Chenoweth, W. L. & Leveille, G. A. (1975). In Physiological Effects offood Carbohydrate.ACS Symposium Series no. 15 [Jeanes, A. and Hodges, J., editors]. Washington, DC: American Chemical Society.Google Scholar
Cummings, J. H. (1978). Am. J. clin. Nutr. 31, 521.CrossRefGoogle Scholar
Cummings, J. H., Hill, M. J., Jenkins, D. J. A., Pearson, J. R. & Wiggins, H. S. (1976). Am. J. clin. Nutr. 29, 1468.CrossRefGoogle Scholar
Cummings, J. H., Jenkins, D. J. A. & Wiggins, H. S. (1976). Gut 17, 210.Google Scholar
Cummings, J. H., Southgate, D. A. T., Branch, W., Houston, H., Jenkins, D. J. A. & James, W. P. T. (1978). Lancet i, 5.CrossRefGoogle Scholar
Cummings, J. H., Wiggins, H. S., Jenkins, D. J. A., Houston, H., Jivraj, T., Drasar, B. S. & Hill, M. J. (1978). J. clin. Invest. 61, 953.CrossRefGoogle Scholar
Durrington, P. N., Manning, A. P., Bolton, C. H. & Hartog, M. (1976). Lancet ii, 394.CrossRefGoogle Scholar
Evrard, E. & Janssen, S. (1968). J. Lipid Res. 9, 226.Google Scholar
Harrison, H. C. & Harrison, H. E. (1969). Am. J. Physiol. 217, 121.CrossRefGoogle Scholar
Humrnel, F. C., Shepherd, M. L. & Macey, I. G. (1943). J. Nutr. 25, 59.Google Scholar
James, W. P. T., Branch, W. J. & Southgate, D. A. T. (1978). Lancet i, 638.CrossRefGoogle Scholar
Jenkins, D. J. A., Gassull, M. A., Leeds, A. R., Metz, G., Dilawari, J. B., Slavin, B. & Blendis, L. M. (1977). Gastroenterology 73, 215.CrossRefGoogle Scholar
Jenkins, D. J. A., Leeds, A. R. L., Gassull, M. A., Cochet, B. & Alberti, K. G. M. M. (1977). Ann. int. Med. 86, 20.Google Scholar
Jenkins, D. J. A., Newton, C., Leeds, A. R. & Cummings, J. H. (1975). Lancet i, 1116.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Hockaday, T. D. R., Leeds, A. R., Howarth, R.,Bacon, S., Apling, E. C. & Dilawari, J. (1977). Lancet ii, 779.Google Scholar
Kay, R. M. & Truswell, S. (1977). Am. J. clin. Nutr. 30, 171.Google Scholar
Keys, A., Grande, F. & Anderson, J. T. (1961). Proc. Soc. exp. Biol. Med. 106, 555.Google Scholar
Keys, J. E., Van Soest, P. J. & Young, E. P. (1969). J. Anim. Sci. 29, 11.CrossRefGoogle Scholar
McBee, R. H. (1970). Am. J. clin. Nutr. 23, 1514.Google Scholar
McCance, R. A. & Widdowson, E. M. (1942 a). J. Physiol, Lond. 101, 44.CrossRefGoogle Scholar
McCance, R. A. & Widdowson, E. M. (1942 b). J. Physiol., Lond. 101, 304.Google Scholar
McNeil, N. I., Cummings, J. H. & James, W. P. T. (1978). Gut, 18, 819.Google Scholar
Michaux, A. (1950). C. R. Acad. Sci. 230, 2051.Google Scholar
Michaux, A. (1951). C. R. Acad. Sci. 232, 121.Google Scholar
Miettinen, T. A. & Tarpila, S. (1977). Clinica chim. Acta 79, 471.CrossRefGoogle Scholar
Palmer, G. H. & Dixon, D. G. (1966). Am. J. clin. Nutr. 18, 437.Google Scholar
Paul, A. A. & Southgate, D. A. T. (1978). McCance & Widdowson's The Composition of Foods. London: H.M. Stationery Office.Google Scholar
Petith, M. M. & Schedl, H. P. (1976). Gastroenterology 71, 1039.CrossRefGoogle Scholar
Raymond, W. F. (1969). In Advnnces in Agronomy, p. 1 [Brady, N. C., editor]. New York and London: Academic Press.Google Scholar
Rees, D. A. (1975). In Biochemistry of Carbohydrates, p. 1 [Whelan, W. J., editor]. London: Butterworths.Google Scholar
Rheinhold, J. G., Ismail-Beigi, F. & Faradji, B. (1975). Nutr. Rep. int. 12, 75.Google Scholar
Southgate, D. A. T. (1969). J. Sci. Fd. Agric. 20, 331.Google Scholar
Southgate, D. A. T. (1978). Am. J. clin. Nutr. 31, S107.CrossRefGoogle Scholar
Southgate, D. A. T., Bingham, S. & Robertson, J. (1978). Nature, Lond. 274, 51.Google Scholar
Southgate, D. A. T., Branch, W. J., Hill, M. J., Drasar, B. S., Walters, R. L., Davies, P. S. & Baird, I. M. (1976). Metabolism 25, 1129.CrossRefGoogle Scholar
Southgate, D. A. T. & Durnin, J. V. G. A. (1970). Br. J. Nutr. 24, 517.CrossRefGoogle Scholar
Tanaka, Y. & Skoryna, S. C. (1970). In Intestinal Absorption of Metal Ions, Trace Elements and Radionuclides, p. 101 [Skoryna, S. C. and Waldron-Edwards, D., editors]. Oxford: Pergamon Press.Google Scholar
Werch, S. C. & Ivy, A. C. (1941). Am. J. dig. Dis. 8, 101.Google Scholar
Werch, S. C., Jung, R. W., Plenk, H., Day, A. A. & Ivy, A. C. (1942). Am. J. Dis.Child. 63, 839.Google Scholar
Williams, R. D. & Olmsted, W. H. (1936). J. Nutr. 11, 433.Google Scholar