Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:15:10.008Z Has data issue: false hasContentIssue false

Digestion of carbohydrates of hay in small ruminants

Published online by Cambridge University Press:  09 March 2007

P. Porter
Affiliation:
Physiology Department, University of Liverpool
A. G. Singleton
Affiliation:
Physiology Department, University of Liverpool
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. An analytical scheme for the separation and identification of carbohydrates in food, duodenal contents and faeces of sheep is described.

2. This scheme was applied to three sheep and one goat given hay diets, and the quantities of carbohydrates disappearing from the rumen and intestine respectively were assessed by reference to faecal lignin. Results indicated that 95–100% of digestible cellulose and 96–99% of digestible pentosan disappeared from the rumen.

3. In an investigation of the microbial fraction of duodenal contents in the goat it was estimated that approximately 6 g carbohydrate passed to the duodenum per 24 h. Glucose accounted for a little over half of this amount.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1971

References

REFERENCES

Annison, E. F., Hill, K. J. & Lewis, D. (1957). Biochem. J. 66, 592.CrossRefGoogle Scholar
Arni, P. C. & Percival, E. G. V. (1951). J. chem. Soc. 2, 1822.CrossRefGoogle Scholar
Baker, P. (1943). Ann. appl. Biol. 30, 230.CrossRefGoogle Scholar
Bondi, A. H. & Meyer, H. (1943). J. agric. Sci., Camb. 33, 123.CrossRefGoogle Scholar
Bondi, A. H. & Meyer, H. (1948). Biochem. J. 43, 248.CrossRefGoogle Scholar
Bryant, M. P. (1959). Bact. Rev. 23, 125.CrossRefGoogle Scholar
Gardell, S. (1951). Acta chem. scand. 5, 1011.CrossRefGoogle Scholar
Gray, F. V., Pilgrim, A. F. & Weller, R. A. (1958). Br. J. Nutr. 12, 404.CrossRefGoogle Scholar
Heald, P. J. (1951). Br. J. Nutr. 5, 84.CrossRefGoogle Scholar
Howard, B. H. (1955). Biochem. J. 60, i.Google Scholar
Howard, B. H. (1957). Biochem. J. 67, 643.CrossRefGoogle Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 377.CrossRefGoogle Scholar
Masson, F. M. & Oxford, A. E. (1951). J. gen. Microbiol. 5, 664.CrossRefGoogle Scholar
Oxford, A. E. (1951). J. gen. Microbiol. 5, 83.CrossRefGoogle Scholar
Paloheimo, L., Mäkelä, A. & Salo, M. L. (1955). Maataloust. Aikakausk. 27, 70.Google Scholar
Porter, P. & Singleton, A. G. (1965). Biochem. J. 96, 59 p.Google Scholar
Porter, P. & Singleton, A. G. (1966). J. Physiol., Lond. 186, 145 p.Google Scholar
Porter, P & Singleton, A. G. (1971). Br. J. Nutr. 25, 3.CrossRefGoogle Scholar
Ridges, A. P. & Singleton, A. G. (1962). J. Physiol., Lond. 161, 1.CrossRefGoogle Scholar
Schambye, P. (1951). Nord. VetMed. 3, 555.Google Scholar
Singleton, A. G. (1961). J. Physiol., Lond. 155, 134.CrossRefGoogle Scholar
Topps, J. H., Kay, R. N. B. & Goodall, E. D. (1968). Br. J. Nutr. 22, 261.CrossRefGoogle Scholar
Weller, R. A. & Gray, F. V. (1954). J. exp. Biol. 31, 40.CrossRefGoogle Scholar