Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T09:45:09.788Z Has data issue: false hasContentIssue false

Changes in serum cholinesterase (EC 3 1 * 1 * 8) activity in rats consuming a high-fat diet*

Published online by Cambridge University Press:  09 March 2007

Jesus Osada
Affiliation:
Departamento de Bioquimica y Biologia Molecular, Facultad de Veterinariu, Miguel Servet, 177, 50.013 Zaragoza, Spain
Hortensia Aylagas
Affiliation:
Instituto de Bioquimica, Centro mixto (CSIC- UCM), Facultad de Farmacia, Ciudad Universitaria, 28.040 Madrid,Spain
Gonzalo Cao
Affiliation:
Servicio de Analisis Clinicos, Hospital de la Seguridad Social, LPrida, Spain
Maria Jesus MIRo−Obradors
Affiliation:
Instituto de Bioquimica, Centro mixto (CSIC- UCM), Facultad de Farmacia, Ciudad Universitaria, 28.040 Madrid,Spain
Evangelina Palacios−Alaiz
Affiliation:
Departamento de Bioquimica y Biologia Molecular, Facultad de Veterinariu, Miguel Servet, 177, 50.013 Zaragoza, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Adult male rats were fed on a control diet containing (g/kg) carbohydrate 600, lipid 35 and protein 190, or on a high-fat diet containing carbohydrate 360, lipid 420 and protein 120. After 30 d, the high-fat diet provoked a decrease in serum cholinesterase (EC 3.1.1.8) activity which was reversed by feeding rats on the control diet. The observed decrease after 90 d on the high-fat diet was not seen if a simultaneous daily intraperitoneal injection of a lipotrophic agent containing (mg/kg) S-adenosyl-l-methionine 3, coenzyme A 0.1, UDP-glucose 30 and CDP-choline 1.5 was given to rats on the high-fat diet. The findings are discussed in relation to the apparent susceptibility of serum cholinesterase to dietary components and its possible role in lipid metabolism.

Type
Lipids
Copyright
Copyright © The Nutrition Society 1989

References

REFERENCES

Antopol, W., Tuchman, T. & Schifin, W. (1973). Cholinesterase activity in human sera, with special reference to hyperthyroidism. Proceedings of the Society for Experimental Biology and Medicine. 36, 4649.Google Scholar
Aylagas, H. (1988). Metabolismo hepático de fosfolipidos en rata durante la ingesta de etanol. PhD Thesis, Universidad Complutense, Madrid. pp. 151157.Google Scholar
Chu, M. I., Fontaine, P., Kutty, K. M., Murphy, D. & Redheendran, R. (1978). Cholinesterase in serum and low density lipoprotein of hyperlipidemic patients. Clinica Chimica Acta. 85, 5559.Google Scholar
Deshmukh, M. B. (1986). Changes in serum cholinesterase activity and lipoprotein cholesterol levels in rats during diabetes. IRCS Medical Sciences. 14, 234.Google Scholar
Jain, R., Kutty, K. M., Huang, S. N. & Kean, K. (1983). Pseudocholinesterase/high-density lipoprotein cholesterol ratio in serum of normal persons and of hyperlipoproteinemics. Clinical Chemistry. 29, 10311033.Google Scholar
Knedel, M. & Böttger, R. (1967). Eine kinetische Methode zur Bestimmung der Aktivität der Pseudo- cholinesterase. Klinische Wochenschrift. 45, 325327.Google Scholar
Kutty, K. M., Huang, S. N. & Kean, K. T. (1981). Pseudocholinesterase in obesity: hypercaloric diet induced changes in experimental obese mice. Experientia. 37, 11411142.Google Scholar
Kutty, K. M. & Jacob, J. C. (1972). Serum cholinesterase activity in hyperlipidemia and the in vitro effect of isoniazid on serum cholinesterase. Canadian Journal of Biochemistry. 50, 3234.Google Scholar
Kutty, K. M., Jacob, J. C., Hutton, C. J., Davis, P. J. & Peterson, S. C. (1975). Serum beta-lipoproteins: studies in a patient and in guinea-pigs after the ingestion of organophosphorus compounds. Clinical Biochemistry. 8, 379383.Google Scholar
Kutty, K. M., Rowden, G. & Cox, A. R. (1973). Interrelationship between serum beta-lipoprotein and cholinesterase. Canadian Journal of Biochemistry. 51, 883887.Google Scholar
Magarian, E. O. & Dietz, A. J. (1987). Correlation of cholinesterase with serum lipids and lipoproteins. Journal of Clinical Pharmacology. 27, 819820.Google Scholar
Moss, D. W., Henderson, A. R. & Kachmar, J. F. (1986). Enzymes. In Textbook of Clinical Chemistry, pp. 619763 [Tietz, N. W. editor]. Philadelphia: Saunders.Google Scholar
Ryhanen, R. J. J., Herranen, J. & Korhonen, K. (1984). Relationship between serum lipids, lipoproteins and pseudocholinesterase during organophosphate poisoning in rabbits. International Journal of Biochemistry. 16, 687690.Google Scholar
Ryhanen, R. J. J., Jauhainen, M. S., Laitinen, M. V. & Puhakainen, E. V. (1982). The relationships between human serum cholinesterase, lipoproteins, and apolipoproteins. Biochemical Medicine. 28, 241245.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1969). In Biometria, 2nd ed. [Freeman, W. H. editor]. Madrid: Blume.Google Scholar