Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T13:12:37.681Z Has data issue: false hasContentIssue false

Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 Years

Published online by Cambridge University Press:  09 March 2007

J. V. G. A. Durnin
Affiliation:
Institute of Physiology, The University, Glasgow G12 8QQ
J. Womersley
Affiliation:
Institute of Physiology, The University, Glasgow G12 8QQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Skinfold thicknesses at four sites – biceps, triceps, subscapular and supra-iliac – and total body density (by underwater weighing) were measured on 209 males and 272 females aged from 16 to 72 years. The fat content varied from 5 to 50% of body-weight in the men and from 10 to 61% in the women.

2. When the results were plotted it was found necessary to use the logarithm of skinfold measurements in order to achieve a linear relationship with body density.

3. Linear regression equations were calculated for the estimation of body density, and hence body fat, using single skinfolds and all possible sums of two or more skinfolds. Separate equations for the different age-groupings are given. A table is derived where percentage body fat can be read off corresponding to differing values for the total of the four standard skinfolds. This table is subdivided for sex and for age.

4. The possible reasons for the altered position of the regression lines with sex and age, and the validation of the use of body density measurements, are discussed.

Type
Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Alexander, M. L. (1964). Clin. Sci. 26, 193.Google Scholar
Allen, T. H., Peng, M. T., Chen, K. P., Huang, T. F., Chang, C. & Fang, H. S. (1956). Metabolism 5, 346.Google Scholar
Baker, P. T. & Angel, J. L. (1965). Hum. Biol. 37, 104.Google Scholar
Baker, P. T. & Little, M. A. (1965). Hum. Biol. 37, 122.Google Scholar
Brook, C. G. D. (1971). Br. J. Nutr. 25, 377.CrossRefGoogle Scholar
Brozek, J. & Keys, A. (1951). Br. J. Nutr. 5, 194.CrossRefGoogle Scholar
Brozek, J. & Kinsey, W. (1960). J. Geront. 15, 45.CrossRefGoogle Scholar
Brozek, J. & Mori, H. (1958). Hum. Biol. 30, 322.Google Scholar
Brozek, J., Grande, F., Anderson, J. T. & Keys, A. (1963). Ann. N.Y. Acad. Sci. 110, 113.CrossRefGoogle Scholar
Chen, K. P. (1953). J. Formosan med. Ass. 52, 271.Google Scholar
Chinn, K. S. K. & Allen, T. H. (1960). Rep. U.S. Army med. Res. Nutr. Lab. no. 248.Google Scholar
Durnin, J. V. G. A. & Rahaman, M. M. (1967). Br. J. Nutr. 21, 681.CrossRefGoogle Scholar
Edwards, D. A. W. (1950). Clin. Sci. 9, 259.Google Scholar
Edwards, D. A. W., Hammond, W. H., Healy, M. J. R., Tanner, J. M. & Whitehouse, R. H. (1955). Br. J. Nutr. 9, 133.CrossRefGoogle Scholar
Forbes, G. B. (1962). Pediatrics, Springfield 29, 477.CrossRefGoogle Scholar
Forbes, G. B. & Amirhakimi, G. H. (1970). Hum. Biol. 42, 401.Google Scholar
Garn, S. M. (1956). Science, N. Y. 124, 178.CrossRefGoogle Scholar
Garn, S. M. & Gormon, E. L. (1956). Hum. Biol. 28, 407.Google Scholar
Gwinup, G., Chelvam, R. & Steinberg, T. (1971). Ann. intern. Med. 74, 408.CrossRefGoogle Scholar
Hammond, W. H. (1955). Br. J. prev. Soc. Med. 9, 201.Google Scholar
Mainland, D. (1957). J. Geront. 12, 284.CrossRefGoogle Scholar
Moore, F. A., Lister, J., Boyden, C. M., Ball, M. R., Sullivan, N. & Dagher, F. J. (1968). Hum. Biol. 40, 135.Google Scholar
Pa& rcaron;izkovi, J. & Eiselt, E. (1966). Hum. Biol. 38, 351.Google Scholar
Pitts, G. C. (1956). Am. J. Physiol. 185, 41.CrossRefGoogle Scholar
Pitts, G. C. & Bullard, T. R. (1968). Publs natn. Acad. Sci., Wash. no. 1598, p. 45.Google Scholar
Rahn, H., Fenn, W. O. & Otis, A. B. (1949). J. appl. Physiol. 1, 725.CrossRefGoogle Scholar
Siri, W. E. (1956). Univ. Calq. Radiat. Lab. Publ. no. 3349.Google Scholar
Skerli, B., Brozek, J. & Hunt, E. E. (1953). Am. J. phys. Anthrop. 11, 277.Google Scholar
Smith, D. A.Anderson, J. B., Shimmins, J., Speirs, C. F. & Barnett, E. (1969). Clin. Radiol. 20, 23.CrossRefGoogle Scholar
Sorenson, J. A., Mazess, R. B., Smith, E. L., Clark, J. A. & Cameron, J. R. (1968). Bone Mineral and Body Composition: Progress Report. Wisconsin: University of Wisconsin.Google Scholar
Steinkamp, R. C., Cohen, N. L., Gaffey, W. R., McKey, T., Bron, G., Siri, W. E., Sargent, T. W. & Isaacs, E. (1965). J. chron. Dis. 18, 1291.CrossRefGoogle Scholar
Tanner, J. M. (1962). Growth at Adolescence 2nd ed. Oxford: Blackwell Scientific Publications.Google Scholar
Tanner, J. M. & Whitehouse, R. H. (1962). Br. med. J. i, 446.CrossRefGoogle Scholar
Trotter, M., Broman, G. E. & Peterson, R. R. (1959). Am. J. phys. Anthrop. 17, 19.CrossRefGoogle Scholar
Trotter, M. & Peterson, R. R. (1955). Anat. Rec. 123, 341.CrossRefGoogle Scholar
Vierordt, H. (1906). In Anatomische, Physiologische und Physikalische, Daten und Tabellen zum Gebrauch für Mediziner. Jena: Fisher.Google Scholar
Weiner, J. S. & Lourie, J. A. (1969). In Human Biology: A Guide to Field Methods. I.B.P. Handbook no. 9. Oxford: Blackwell Scientific Publications.Google Scholar
Womersley, J. & Durnin, J. V. G. A. (1973). Hum. Biol. 45, 281.Google Scholar
Young, C. M., Blondin, J., Tensuan, R. & Fryer, J. H. (1963). J. Am. diet. Ass. 43, 344.CrossRefGoogle Scholar