Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:04:04.078Z Has data issue: false hasContentIssue false

Mapping the invisible: knowledge, credibility and visions of earth in early modern cave maps

Published online by Cambridge University Press:  10 January 2022

Johannes Mattes*
Affiliation:
Austrian Academy of Sciences
*
*Corresponding author: Johannes Mattes, Email: [email protected]

Abstract

This paper examines cave environments as unique spaces of knowledge production and shows how visualizations of natural cavities in maps came to be powerful tools in scientific reasoning. Faced with the challenge of limited vision, mapmakers combined empiricism and imagination in an experimental setting and developed specific translation strategies to deal with the uncertain origin of underground objects and the shifting boundaries between the known and the unknown. By deconstructing this type of cartographic representation, which has barely been studied, this paper furnishes surprising insights into the scholarly practices and tools used to deal with this considerable epistemic uncertainty and to signal credibility and trust to potential users. The array of maps used for this study includes both archival and published sources, depicting caves in Europe, America and Siberia.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of British Society for the History of Science

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See Martin Mulsow, Frühneuzeitliche Selbsterhaltung: Telesio und die Naturphilosophie der Renaissance, Berlin and Boston: Niemeyer, 2013, pp. 57–102; Meyer, Kirstine, ‘Zur Geschichte der Antiperistasis’, Annalen der Naturphilosophie (1904) 3, pp. 413–41Google Scholar.

2 See Niels Steensen, La grotta di Moneoden, 1671 (National Central Library of Florence, Ms., Gal. 286/32), pp. 58r–61r. For a translation of Steno's letters, see Troels Kardel and Paul Maquet (eds.), Nicolaus Steno, Berlin: Springer, 2013, pp. 330–4, 671–7.

3 Arguments against antiperistasis had already been put forward by numerous early modern scholars, including Robert Boyle. See Robert Boyle, New Experiments and Observations Touching Cold, Or, an Experimental History of Cold Begun to Which Are Added an Examen of Antiperistasis and an Examen of Mr. Hobs's Doctrine About Cold, London: John Crook, 1665.

4 Ciancio, Luca, ‘“Voyons maintenant si cette opinion se trouve conforme à l'experience”: Nicola Stenone, Athanasius Kircher e le origini della speleologica’, Accademia roveretana degli Agiati (2004) 254, pp. 5772, 71Google Scholar.

5 Wise, M. Norton, ‘Making visible’, Isis (2006) 97(1), pp. 7582, 81CrossRefGoogle Scholar.

6 See e.g. John Brian Harley, ‘The map and the development of the history of cartography’, in John Brian Harley and David Woodward (eds.), The History of Cartography, vol. 1, Chicago: The University of Chicago Press, 1987, pp. 1–42, 2; Turnbull, David, ‘Cartography and science in early modern Europe: mapping the construction of knowledge spaces’, Imago Mundi (1996) 48, pp. 524, 7CrossRefGoogle Scholar; Felipe Fernández-Armesto, ‘Maps and exploration in the sixteenth and early seventeenth centuries’, in David Woodward (ed.), The History of Cartography, vol. 3, Part 1, Chicago: The University of Chicago Press, 2007, pp. 738–59, 741; Mark Monmonier, ‘Cartography: history’, in Douglas Richardson, Noel Castree, Michael F. Goodchild, Audrey Kobayashi, Weidong Liu and Richard A. Marston (eds.), The International Encyclopedia of Geography, Chichester and Hoboken: John Wiley & Sons, 2017, pp. 1–12.

7 Rudwick, Martin, ‘The emergence of a visual language for geological science 1760–1840’, History of Science (1976) 14, pp. 149–95CrossRefGoogle Scholar. See Klaus Hentschel, Visual Cultures in Science and Technology: A Comparative History, Oxford: Oxford University Press, 2014, pp. 87–91.

8 Kenneth Taylor, ‘Early geoscience mapping, 1700–1830’, Proceedings of the Geoscience Information Society (1985) 15, pp. 15–49, 15, 45.

9 Taylor, op. cit. (8), p. 16.

10 See William Ashworth, Vulcan's Forge and Fingal's Cave: Volcanoes, Basalt, and the Discovery of Geological Time, Kansas City: Linda Hall, 2004; Jane Davidson, A History of Paleontology Illustration, Bloomington: Indiana University Press, 2008; Martin Rudwick, The Meaning of Fossils: Episodes in the History of Palaeontology, London: MacDonald, 1972; Keller, Susan, ‘Sections and views: visual representation on eighteenth-century earthquake studies’, BJHS (1998) 31, pp. 129–59CrossRefGoogle Scholar; David Oldroyd, ‘Maps as pictures or diagrams’, in Viktor Baker (ed.), Rethinking the Fabric of Geology, Boulder, CO: Geological Society of America, 2013, pp. 41–101. Simon Winchester, The Map That Changed the World: William Smith and the Birth of Modern Geology, New York: HarperCollins, 2001. An overview is provided by Ciancio, Luca and Laurenza, Domenico, ‘Visual representation in earth sciences history after “The Emergence”’, Nuncius (2018) 33, pp. 397414CrossRefGoogle Scholar.

11 See Fritz Emslander, Unter klassischem Boden: Bilder von Italiens Grotten im späten 18. Jahrhundert, Berlin: Reimer, 2007; Barbara Stafford, Voyage into Substance, Cambridge, MA: MIT Press, 1983.

12 Hamm, Ernst, ‘Knowledge from underground: Leibniz mines the Enlightenment’, Earth Sciences History (1997) 16(2), pp. 7799, 84, 87CrossRefGoogle Scholar.

13 Michael Shortland, ‘Darkness visible: underground culture in the golden age of geology’, History of Science (1994) 32(1), pp. 1–61, 43.

14 Nicolaas Rupke, ‘The study of fossils in the romantic philosophy of history and nature’, History of Science (1983) 21(4), pp. 389–413, 392. See Rupke, ‘The end of history in early picturing of geological time’, History of Science (1998) 36(1), pp. 61–90.

15 See Ciancio, op. cit. (4), pp. 57–72.

16 See Johannes Mattes, Reisen ins Unterirdische: Eine Kulturgeschichte der Höhlenforschung, Vienna: Böhlau, 2015, pp. 89–95.

17 Jakob Vogel, ‘Aufklärung untertage: Wissenswelten des europäischen Bergbaus im ausgehenden 18. und frühen 19. Jahrhundert’, in Hartmut Schleiff and Peter Konečny (eds.), Staat, Bergbau und Bergakademie, Stuttgart: Steiner, 2013, pp. 13–31. See Patrick Anthony, ‘Mining as the working world of Alexander von Humboldt's plant geography and vertical cartography’, Isis (2018) 109(1), 28–55.

18 See special issues of the journals Communications (2019) 109, Vivants sous terre (ed. Monique Peyrière and Évelyne Ribert); Centaurus (2020) 62(4), Verticality in the History of Science (ed. Wilko Graf von Hardenberg and Martin Mahony); Renaissance Studies (2020) 34(1), The Cultural and Material Worlds of Mining in Early Modern Europe (ed. Tina Asmussen); Traverse (2020) 2, Unter Grund: Eine vertikale Verflechtungsgeschichte (ed. Tina Asmussen, Silvia Berger Ziauddin, Alexandre Elsig and Bianca Hoenig); Political Geography (2019–21), Earth Politics: Territory and the Subterranean (ed. Matthew Himley and Andrea Marston). On caves and subterranean space see María Pérez, ‘Volumes, caves, bodies, relatedness: the case of Cuban speleology and national defense’, Geoforum (2021) 127, pp. 412–23. A promising PhD project on multidisciplinary collaborations in cave and karst environments is currently led by Simone Sambento at the University of Edinburgh, Science, Technology and Innovation Studies. See also Bruce Braun, ‘Producing vertical territory: geology and governmentality in late Victorian Canada’, Cultural Geographies (2000) 7(1), pp. 7–46; Stuart Elden, ‘Secure the volume: vertical geopolitics and the depth of power’, Political Geography (2013) 34, pp. 35–51; Steven Graham and Lucy Hewitt, ‘Getting off the ground: on the politics of urban verticality’, Progress in Human Geography (2013) 37, pp. 72–92.

19 For example, caves are not considered in the wide-ranging survey by Helen Curry, Nicholas Jardine, James Secord and Emma Spary (eds.), Worlds of Natural History, Cambridge: Cambridge University Press, 2018.

20 See John Glennon, ‘Cave map’, in Mark Monmonier (ed.), The History of Cartography, vol. 6, Chicago: The University of Chicago Press, 2015, pp. 206–7.

21 See Wookey, ‘Cave surveying’, in John Gunn (ed.), Encyclopedia of Caves and Karst Science, New York: Fitzroy Dearborn, 2004, pp. 714–7.

22 Božić provides a compilation of milestone maps in the history of speleology and discusses them in sequence. See Vlado Božić, Razvoj speleološkog nacrta, Zagreb: Hrvatski planinarski savez, 2004. Kempe et al. address scholarly descriptions and depictions of Baumannshöhle (Germany) in the early modern literature. See Stephan Kempe, Boris Dunsch, Klaus Fetkenheuer, Gottfried Naumann and Fritz Reinboth, ‘Die Baumannshöhle bei Rübeland/Harz im Spiegel der wissenschaftlichen Literatur vom 16. bis zum 18. Jahrhundert’, Braunschweiger Naturkundliche Schriften (2004) 7(1), pp. 171–215. Lima et al. deal with the map of Gruta das Onças (Brazil), made by the Portuguese naturalist Alexandre Rodrigues Ferreira in 1790. See José G.A. Lima, Evanoir T. França, Jocy B. Cruz et al., ‘Gruta das Onças: a redescoberta da primeira caverna mapeada no Brasil’, Congresso Brasileiro de Espeleologia (2015) 33, pp. 207–17. Mattes examines the influence of fieldwork practices and their standardization in the scientific accreditation of speleology, based on maps made between 1870 and 1930 in Europe and North America. See Johannes Mattes, ‘Underground fieldwork: a cultural and social history of cave cartography and surveying instruments in the 19th and at the beginning of the 20th century’, International Journal of Speleology (2015) 44(3), pp. 251–66; Sutton uses maps of Mammoth Cave (Kentucky) to illustrate the ‘progress of underground survey and cartography’ in the nineteenth and twentieth centuries. See Michael Sutton, ‘A history of map-making at Mammoth Cave’, in Horton Hobbs, Rickard Olson, Elizabeth Winkler et al. (eds.), Mammoth Cave: A Human and Natural History, Cham: Springer, 2017, pp. 77–95. Zajíček studies around fifty maps produced since the 1800s in Bohemia and Moravia and provides facsimiles of these unique sources. See Petr Zajíček, Jeskyně České republiky na historických mapách, Prague: Academia, 2016.

23 See Trevor Shaw, History of Cave Science, 2nd edn, Sydney: Sydney Speleological Society, 1992.

24 See John Brian Harley, ‘Deconstructing the map’, Cartographica (1989) 26(2), pp. 1–20; Derek Gregory, ‘Imaginierte Geographien’, Österreichische Zeitschrift für Geschichtsforschung (1995) 6(3), pp. 366–425.

25 See Simon Naylor, ‘Historical geographies of science: places, contexts, cartographies’, BJHS (2005) 38(1), pp. 1–12; Turnbull, op. cit. (6), pp. 5–24; Charles Withers, ‘Reporting, mapping, trusting: making geographical knowledge in the late seventeenth century’, Isis (1999) 90(3), pp. 497–521.

26 See Charles Withers, ‘Trust – in geography’, Progress in Human Geography (2018) 42(4), pp. 489–508.

27 David Livingstone, Putting Science in Its Place: Geographies of Scientific Knowledge, Chicago: The University of Chicago Press, 2003, p. 147; Withers, op. cit. (26), p. 500. See Steven Shapin, A Social History of Truth: Civility and Science in Seventeenth-Century England, Chicago: The University of Chicago Press, 1994, p. 245.

28 Although Athanasius Kircher's two-volume Mundus subterraneus contains numerous visualizations of subterranean space, none of these images depicts a specific cave. In the first edition, Kircher discusses caves in Chapter 20 (‘About caves, cracks, and innumerable passages of earth’) at the end of ‘Liber secundus’, but quotes mainly ancient authors. In the third edition, a letter by Cornelius Magni from Parma is reproduced at the end of the chapter with an account of his visit of Antiparos Cave in 1673. Kircher himself only refers to having visited the Monte Serana Cave near Trevi (Umbria). See Stephan Kempe, Gottfried Naumann and Boris Dunsch, ‘Athanasius Kircher's chapter XX “About caves, fractures and the innumerable passages of the earth” and the Grotto of Antiparos from “Mundus subterraneus”, 1678, translated from Latin’, in Michal Filippi and Pavel Bosák (eds.), Proceedings 16th International Congress of Speleology, Brno, 2013, vol. 1, Prague: Czech Speleological Society, 2013, pp. 59–64. Athanasius Kircher, Mundus subterraneus, 1st edn, vol. 1, Amsterdam: Jansson & Weyerstraten, 1664, pp. 118–20. Kircher, Mundus subterraneus, 3rd edn, vol. 1, Amsterdam: Jansson & Filios, 1678, pp. 120–31.

29 Susan Star and James Griesemer, ‘Institutional ecology, “translations” and boundary objects: amateurs and professionals in Berkeley's Museum of Vertebrate Zoology’, Social Studies of Science (1989) 19(4), pp. 387–420.

30 Norman Thrower, Maps and Man: An Examination of Cartography in Relation to Culture and Civilization, Englewood Cliffs: Prentice Hall, 1972, p. 1. See Arthur Robinson, Early Thematic Mapping in the History of Cartography, Chicago: The University of Chicago Press, 1982; Harley, op. cit. (6), pp. 1–42.

31 See Johannes Mattes, ‘Entre nature et culture: les grottes, cabinets de curiosités naturelles à l’époque modern’ (tr. Claudine Cohen), Communications (2019) 105(2), pp. 13–26.

32 See Gottfried W. Leibniz, Protogaea, ed. Christian Scheid, Göttingen: Schmid, 1749, map on Tab. I; Hermann von der Hardt, ‘Descriptio speluncae ad sylvam Hercyniam’, Acta eruditorum (1702), pp. 305–8.

33 Leibniz, op. cit. (32), p. 68. Translation in Gottfried W. Leibniz, Protogaea (1749) (ed. Claudine Cohen and Andre Wakefield), Chicago: The University of Chicago Press, 2008, p. 113.

34 The underground's perceived exclusionary character was supported by the fact that early cave maps often omitted above-ground topographies. Likewise, overground maps frequently did not show cave entrances, thus denying the existence of a subterranean topography. The first topographical map to use uniform cartographic symbols for the designation of cave entrances was probably a hydrological map of Slovenia published in Belsazar Hacquet's Oryctographia Carniolica (1778–89). See Belsazar Hacquet, Oryctographia Carniolica, vol. 1, Leipzig: Breitkopf, 1778. A section of the Sveta Jama cave (Slovenia) is depicted on the cover of the first volume.

35 John Beaumont, ‘A Letter, giving an account of [W]Ookey-hole’, Philosophical Collections (1681) 2, pp. 1–7, 4.

36 Georg Agricola, De re metallica libri XII, Basel: Froben, 1556, p. 81.

37 Humboldt, for example, complained during his visit to Cueva del Guácharo (Venezuela) that ‘the thick smoke of torches in narrow underground space hurts the eyes and makes breathing difficult’. Alexander von Humboldt, Reise in die Aequinoctial-Gegenden (ed. Hermann Hauff), Stuttgart: Cotta, 1859, p. 366.

38 Friedrich Lesser, Anmerckungen von der Baumanns-Höhle, 4th edn, Nordhausen: Groß, 1745, pp. 17–8.

39 John Brian Harley, ‘Silences and secrecy: the hidden agenda of cartography in early modern Europe’, Imago Mundi (1988) 40, pp. 57–76.

40 Paul d'Holbach, ‘La Grotte’, in Denis Diderot and Jean-Baptiste d'Alembert (eds.), Encyclopédie, vol. 7, Paris: Braisson, 1757, pp. 967–8, 967.

41 See Philipp von Strahlenberg, Das Nord- und Östliche Theil von Europa und Asia, Stockholm: self-published, 1730, p. 372; Elena Trofimova, ‘Ice cave map pioneering: Russian experience’, Journal of the Croatian Cartographic Society (2017) 16, pp. 154–9.

42 Johann Berckhan, Ichnographia specus subterraneae Kunguriensis (The Russian State Archive of Ancient Acts, F. 199, Opt. 2, Portfolio 430, D. 20, p. 1). See Johann Gmelin, Reise durch Sibirien von dem Jahre 1733 bis 1743, vol. 1, Göttingen: Vandenhoeck, 1751, pp. 106–8.

43 The symbolic representation of Jesus’ birthplace – and also of Mary's womb – as a cave originated in the Eastern Catholic Church and is exemplified by the grotto of the Church of the Nativity in Bethlehem. This representation spread through Europe during the Middle Ages, entrenching the sense of underground cavities as feminine, fertile sites. For the perception of the Earth's interior as the ‘womb’ of minerals see Carolyn Merchant, The Death of Nature: Women, Ecology and the Scientific Revolution, 2nd edn, San Francisco: Harper, 1983, pp. 28–41; Horst Bredekamp, ‘Die Erde als Lebewesen’, Kritische Berichte (1981) 9(4–5), pp. 5–37, 14.

44 Franz Brückmann, Thesaurus subterraneus, Braunschweig: Meisner, 1728, p. 8.

45 See Johann Rosenmüller, Beschreibung merkwürdiger Höhlen, 2 vol., Leipzig: Breitkopf & Härtel, 1799/1805; Carl Lang, Galerie der unterirdischen Schöpfungswunder, 2 vols., Leipzig: Tauchnitz, 1801.

46 See Horst Bredekamp, The Lure of Antiquity and the Cult of the Machine, Princeton, NJ: Wiener, 1995. Frequently, mapmakers took up the analogy of nature and architecture and varied it in a playful way, as a 1753 drawn comparative profile depiction of Drachenhöhle (Austria) and a mine near Pirchfeld illustrates. Geyer, Plan der L.F. Kupfer und Plei Bergwer[k] Pirchfeld, sambt den Rettelsteiner Berg in der Breitenau, 1753 (Moravská zemská knihovna, Brno, Map Collection, Moll-0001.494).

47 See Shaw, op. cit. (23), pp. 112–13; Mattes, op. cit. (16), pp. 119–27.

48 See Georges-Louis de Buffon, Histoire naturelle des mineraux, vol. 1, Paris: Imprimerie royale, 1783, pp. 275–6; Samuel Rudder, A New History of Gloucestershire, Cirencester: Rudder, 1779, pp. 796–8.

49 Mathieu Dumas, Plan de Labyrinthe de Crète, 1783 (Archives départementales des Yvelines, Collection graphique, FR/FR-AD078/A 1604).

50 See Mathieu Dumas, Souvenirs du lieutenant général comte Mathieu Dumas, vol. 1, Paris: Gosselin, 1839.

51 Dumas, op. cit. (50), p. 255.

52 Early cave explorers were accustomed to see their own bodies as measuring tools, striding out the length of a cave's galleries. The hours or footsteps incurred during a given tour underground counted as evidence of the length of the cave. Like Theseus in the mythological labyrinth of the Minotaur, Dumas and his companions used a cord to orient themselves inside the cave.

53 Dumas, op. cit. (50), p. 248.

54 Franz Sieber, ‘Plan du Labyrinth souterain’, in Sieber, Reise nach der Insel Kreta im griechischen Archipelagus, vol. 2, Leipzig: Sorau, 1823, pp. 293–7.

55 Bruno Latour, Nous n'avons jamais été modernes, Paris: Découverte, 1990; Donna Haraway, Simians, Cyborgs, and Women: The Reinvention of Nature, New York: Routledge, 1991; Lorraine Daston and Katharine Park, Wonder and the Order of Nature, 1150–1750, New York: Zone Press, 1998, p. 277.

56 See John Hill, A History of Fossils, vol. 1, London: Osborne, 1748, p. 370.

57 See Johan Gottschalk Wallerius, Minéralogie …, vol. 2, Paris: Durand et Pissot, 1753, p. 8.

58 Georg Behrens, Hercynia Curiosa, Nordhausen: Neuenhahn, 1703, p. 2.

59 Studiosus von Alvensleben, Bumanß-höle, 1656 (Landeshauptarchiv Sachsen-Anhalt, Rep. H66, Gutsarchiv Erxleben II, Nr. 952, two map sheets); Kempe et al., op. cit. (22), pp. 184–88.

60 For example, the Prussian military doctor Johannes Hain, who in 1672 had published a richly illustrated treatise on supposed ‘dragon bones’ found in Carpathian caves, commissioned the priest of a Piarist high school and a nobleman from Liptov (Slovakia) to map the local ice caves. See Johannes Hain, ‘De Draconum Carpathicorum cavernis’, Miscellanea Curiosa (1672) 3, pp. 366–70.

61 Pierre Smolarski, ‘Dispositio des Raumes’, in Christian Haß and Eva Noller (eds.), Was bedeutet Ordnung: Was ordnet Bedeutung?, Berlin: Gruyter, 2015, pp. 273–90, 274–7. See Kenneth Burke, Permanence and Change, Berkeley: University of California Press, 1984, p. 29.

62 Other motifs, some of which relate to the labyrinth mythos, reflect an understanding of the subterranean world as counterpart of mountains or cities. These motifs came to have a degree of influence on early modern representations of mines and mining towns.

63 Richard Yeo, ‘Classifying the sciences’, in Roy Porter (ed.), The Cambridge History of Science, vol. 4, Cambridge: Cambridge University Press, 2003, pp. 241–66, 241.

64 Cristoforo Buondelmonti, ‘Lamberintus’, in ‘Descriptio insulae Cretae’ (1417), Biblioteca Medicea Laurenziana, Florence, Ms. Plut. 29.42, p. 23r. See Bernard Chirol, ‘The oldest cave map in the world’, UIS Bulletin (2015) 57(2), pp. 25–6; Johanna Heinrichs, ‘The topography of antiquity in descriptions of Venetian Crete’, in Nebahat Avcıoğlu and Emma Jones (eds.), Art, Architecture and Identity in Venice and Its Territories, London: Routledge, 2016, pp. 205–18.

65 See Thomas Jefferson, Madison's Cave Plan, 1783 (Massachusetts Historical Society, Coolidge Collection); Kevin Hayes, The Road to Monticello: The Life and Mind of Thomas Jefferson, New York: Oxford University Press, 2008, pp. 260–2.

66 From the turn of the nineteenth century to the collapse of the domestic saltpetre market in 1814, saltpetre resources found in caves in the United States were used for the production of gunpowder, and their extraction boosted the surveying of caverns.

67 Thomas Jefferson, Notes on the State of Virginia, London: Stockdale, 1787, pp. 32–3.

68 Jefferson, op. cit. (67), pp. 31, 33.

69 See Uta Lindgren, ‘Land surveys, instruments, and practitioners in the Renaissance’, in Woodward, op. cit. (6), pp. 477–508, 487–8.

70 Epicartographic elements are map symbols that are not subject to graphic generalization or projection.

71 Providing a three-dimensional view of an object, cave maps of Geldloch and Taubenloch (Austria), drawn by the architect and painter Franz Rosenstingl (1702–85), met the visual expectations of the map users by enabling them to scan the entire cave by eye. See Joseph A. Nagel, ‘Beschreibung des auf allerhöchsten Befehl … untersuchten Oetscherberges’, 1747 (Austrian National Library, Ms. 7920), Tab. III, IV. Leibniz, for example, argued for a perspective map projection: ‘Hence, it would be necessary to draw a scenographic or perspective map of the mine, as if the eye were floating in the air and the mountain were transparent’. Gottfried W. Leibniz, Sämtliche Schriften und Briefe, Part 1, vol. 3, Berlin: Akademie, 1970, p. 159 (memorandum probably written for Ernst August, Duke of Brunswick-Lüneburg, in 1682). See Hamm, op. cit. (12), p. 84.

72 For a hybrid projection plane see the map of S. Rosalia Cave on Monte Pellegrino. Giordano Cascini, Di S. Rosalia, vergine Palermitana, libri tre, Palermo: Cirilli, 1651, Tab. XVI.

73 Georg C. Lichtenberg, Vermischte Schriften nach dessen Tode gesammelt, vol. 7, Göttingen: Dieterich, 1804, p. 63.

74 Buffon, for example, broke new ground in explaining the different speeds of speleothem growth by the structure and material of the overlying ground. See Buffon, op. cit. (48), p. 283.

75 Georg Buchholtz, ‘Antra Deminfalvensia admiranda’, in Mátyás Bél (ed.), Hungariae antiquae et novae prodromus, Nuremberg: Monath, 1723, p. 141.

76 See Jakob Buchholtz, ‘Reise auf die Karpatischen Gebirge’, Ungarisches Magazin (1787) 4(1), pp. 34–58, 45.

77 For a synchronous depiction of different projection planes see the maps of Mondmilchloch (Switzerland) and Antiparos Cave (Greece). Mauritius Cappeler, Pilati montis historia, Basel: Imhof, 1767, Tab. VII; Marie Gabriel de Choiseul-Gouffier, Voyage pittoresque de la Grèce, vol. 1, Paris: Tilliard, 1782, p. 73.

78 Friedrich von Trebra, Erfahrungen vom Innern der Gebirge, Dessau: Verlagskasse für Gelehrte, 1785, p. 11.

79 Rupke, ‘The study of fossils’, op. cit. (14), p. 392.

80 Stephen Jay Gould, Time's Arrow, Time's Cycle: Myth and Metaphor in the Discovery of Geological Time, Cambridge, MA: Harvard University Press, 1987. See Paolo Rossi, The Dark Abyss of Time (tr. Lydia Cochrane), Chicago: The University of Chicago Press, 1984, pp. 107–12.

81 Martin Rudwick, ‘Encounters with Adam, or at least the hyenas: nineteenth-century visual representation of the deep past’, in James Moore (ed.), History, Humanity and Evolution, Cambridge: Cambridge University Press, 1989, pp. 231–52, 244. See Shortland, op. cit. (13), pp. 30–1.

82 See Hole Rößler, ‘Der anatomische Blick und das Licht im “theatrum”’, in Helmar Schramm, Ludger Schwarte and Jan Lazardzig (eds.), Spuren der Avantgarde: Theatrum anatomicum, Berlin: Gryter 2011, pp. 97–128, 110; Tina Asmussen, Lucas Burkart and Hole Rößler, Theatrum Kircherianum: Wissenskulturen und Bücherwelten im 17. Jahrhundert, Wiesbaden: Harrassowitz, 2013.

83 Leibniz, op. cit. (33), p. 113.

84 Leibniz, op. cit. (33), p. 99.

85 Leibniz, op. cit. (33), p. 97.

86 Leibniz was influenced both by the idea of a biblical flood disintegrating the Earth's crust and by Nicolaus Steno's hypothesis that fossil aggregations in sediments were deposits from vanished seas. See Cohen, Claudine, ‘Un manuscrit inédit de Leibniz sur la nature des objets fossiles’, Bulletin de la Société géologique de France (1998) 169(1), pp. 137–42Google Scholar; Andre Wakefield, ‘The origins and history of earth’, in Maria Antognazza (ed.), The Oxford Handbook of Leibniz, Oxford: Oxford University Press, 2018, pp. 453–65.

87 Adolph Erman and Paul Herter, ‘Bericht über eine Nachgrabung in der Baumannshöhle’, Zeitschrift der Deutschen geologischen Gesellschaft (1851) 3, pp. 320–9, 323.

88 Rupke, ‘The study of fossils’, op. cit. (14), pp. 391–5; Shortland, op. cit. (13), pp. 32–5.

89 See Johann Friedrich Esper, Ausführliche Nachricht von neuentdeckten Zoolithen unbekannter vierfüssiger Tiere, Nuremberg: Knorr, 1774.

90 Hunter, John, ‘Observations on the fossil bones’, Philosophical Transactions (1794) 84, pp. 407–17, 409–10Google Scholar.

91 See William Buckland, ‘Account of an assemblage of fossil teeth and bones …’, Philosophical Transactions (1822) 112(1); pp. 171–236, 204–7.

92 See William Buckland, Reliquiae Diluvianae; London: Murray, 1823, maps on Tab. XIV–XVII (Gailenreutherhöhle).

93 Shaw, op. cit. (23), pp. 109–70.

94 The French plutonist Barthélemy Faujas de Saint-Fond used an engraving of the famous Fingal's Cave in Scotland to support his hypothesis about its volcanic origin. See Barthélemy F. de Saint-Fond, Voyage en Angleterre …, vol. 2, Paris: Jansen, 1797, pp. 45, 49.

95 See Franz von Steinberg, Gründliche Nachricht von dem in Inner-Crain liegenden Czirknizer-See, Ljubljana: Wittib, 1758, Tab. III, XIV.

96 On the significance of time in maps cf. Veronica Della Dora, ‘Lifting the veil of time: maps, metaphor, and antiquarianism in the seventeenth and eighteenth centuries’, in Kären Wigen and Caroline Winterer (eds.), Time in Maps: From the Age of Discovery to Our Digital Era, Chicago: The University of Chicago Press, 2020, pp. 103–26.

97 See Eggert Ólafsson, Reise igiennem Island, vol. 1, Soroe: Lindgren, 1757, pp. 238–53.

98 Ólafsson, op. cit. (97), p. 253.

99 The map was published by Charles-Nicolas Allou, ‘Sur la grotte de Miremont’, Annales des mines (1822) 7, pp. 597–600, Tab. V, VI. See Jean Bouchereau, ‘La grotte de Miremont en Périgord’, Spelunca Mémoires (1967) 5, pp. 116–26; Shaw, op. cit. (23), pp. 25, 255; an anonymous map in the Archives départementales de la Dordogne, possibly by Brémontier (Bibliothèque numérique du Périgord, Cartes et plans, 1_Fi_1_24356_1).

100 Nicolas Brémontier, [‘Sur la grotte de Miremont’], Mémoires de l'Académie nationale des sciences, arts et belles-lettres de Caen (1783), pp. 137–8.

101 Kardel and Maquet, op. cit. (2), p. 674.

102 Kardel and Maquet, op. cit. (2), p. 647.