Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T11:15:25.250Z Has data issue: false hasContentIssue false

Bilingual experience and executive control over the adult lifespan: The role of biological sex

Published online by Cambridge University Press:  13 June 2018

SIVANIYA SUBRAMANIAPILLAI
Affiliation:
Department of Psychology, Faculty of Science, McGill University Douglas Brain Imaging Centre, Douglas Institute Research Centre Centre for Research on Brain, Language & Music, McGill University
MARIA NATASHA RAJAH
Affiliation:
Department of Psychiatry, Faculty of Medicine, McGill UniversitDouglas Brain Imaging Centre, Douglas Institute Research Centre Centre for Research on Brain, Language & Music, McGill University
STAMATOULA PASVANIS
Affiliation:
Douglas Brain Imaging Centre, Douglas Institute Research Centre
DEBRA TITONE*
Affiliation:
Department of Psychology, Faculty of Science, McGill University Centre for Research on Brain, Language & Music, McGill University
*
Address for correspondence: Debra Titone, Ph.D., Department of Psychology, McGill University, 1205 Dr. Penfield Ave., Montreal, Quebec, H3A1B1, Canada[email protected]

Abstract

We investigated whether bilingual language experience over the lifespan impacts women and men in a manner that differentially buffers against age-related declines in executive control. To this end, we investigated whether executive control performance in a lifespan sample of adult women and men were differentially impacted by individual differences in bilingual language experience, assessed using an unspeeded measure of executive control: the Wisconsin Card Sort Test. The results suggested that women showed both the greatest degree of age-related decline across WCST measures, and a greater likelihood than men to express improved performance as a function of increased bilingual experience. We consider implications of this finding for advancing our understanding of the relation between bilingualism and cognition, and also the effects of biological sex on cognitive aging.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain and language, 109 (2–3), 5154. doi:10.1016/j.bandl.2009. 04.001Google Scholar
Agrigoroaei, S., & Lachman, M. E. (2011). Cognitive functioning in midlife and old age: combined effects of psychosocial and behavioral factors. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 66, i130–i140.10.1093/geronb/gbr017Google Scholar
Alzheimer's Association. (2015). 2015 Alzheimer's disease facts and figures. Alzheimer's and Dementia: The Journal of the Alzheimer's Association, 11 (3), 332384.10.1016/j.jalz.2015.02.003Google Scholar
Amer, T., Campbell, K. L., & Hasher, L. (2016). Cognitive Control As a Double-Edged Sword. Trends in Cognitive Sciences, 20 (12), 905915. https://doi.org/10.1016/j.tics.2016.10.002Google Scholar
Ankudowich, E., Pasvanis, S., & Rajah, M. N. (2017). Changes in the correlation between spatial and temporal source memory performance and BOLD activity across the adult lifespan. Cortex, 91, 234249.10.1016/j.cortex.2017.01.006Google Scholar
Ankudowich, E., Pasvanis, S., & Rajah, M. N. (2016). Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan. NeuroImage, 139, 103113. http://doi.org/10.1016/j.neuroimage.2016.06.022Google Scholar
Ansaldo, A. I., Ghazi-Saidi, L., & Adrover-Roig, D. (2015). Interference Control In Elderly Bilinguals: Appearances Can Be Misleading. Journal of Clinical and Experimental Neuropsychology, 2 (1), 116. http://doi.org/10.1080/13803395.2014.990359Google Scholar
Antón, E., García, Y. F., Carreiras, M., & Duñabeitia, J. A. (2016). Does bilingualism shape inhibitory control in the elderly?. Journal of Memory and Language, 90, 147160.10.1016/j.jml.2016.04.007Google Scholar
Axelrod, B. N., & Henry, R. R. (1992). Age-related performance on the wisconsin card sorting, similarities, and controlled oral word association tests. The Clinical Neuropsychologist, 6 (1), 1626. https://doi.org/10.1080/13854049208404113Google Scholar
Bak, T. H. (2017). The impact of bilingualism on cognitive ageing and dementia. Growing Old with Two Languages: Effects of Bilingualism on Cognitive Aging, 53, 243.10.1075/sibil.53.12bakGoogle Scholar
Bak, T. H. (2016). Cooking pasta in La Paz. Linguistic Approaches to Bilingualism, 6 (5), 699717. http://doi.org/10.1075/lab.16002.bakGoogle Scholar
Bak, T. H., Nissan, J. J., Allerhand, M. M., & Deary, I. J. (2014). Does bilingualism influence cognitive aging? Annals of Neurology, 75 (6), 959–63. http://doi.org/10.1002/ana.24158Google Scholar
Barceló, F. (1999). Electrophysiological evidence of two different types of error in the Wisconsin Card Sorting Test. Neuroreport, 10 (6), 12991303.10.1097/00001756-199904260-00027Google Scholar
Barceló, F. (2001). Does the Wisconsin Card Sorting Test Measure Prefontral Function? The Spanish journal of psychology, 4 (1), 79100.10.1017/S1138741600005680Google Scholar
Barling, J., & MacEwen, K. E. (1991). Maternal employment experiences, attention problems and behavioral performance: A mediational model. Journal of Organizational Behavior, 12 (6), 495505.10.1002/job.4030120604Google Scholar
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends in cognitive sciences, 17 (10), 502509.10.1016/j.tics.2013.08.012Google Scholar
Baum, S., & Titone, D. (2014). Moving toward a neuroplasticity view of bilingualism, executive control, and aging. Applied Psycholinguistics, 35 (5), 857894. http://doi.org/10.1017/S0142716414000174Google Scholar
Beard, J., Officer, A., & Cassels, A. (2015). World Report on Ageing and Health. Luxembourg: World Health Organization Retrieved from http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811_eng.pdf.Google Scholar
Bialystok, E., Abutalebi, J., Bak, T. H., Burke, D. M., & Kroll, J. F. (2016). Aging in two languages: Implications for public health. Ageing Research Reviews, 27, 5660. http://doi.org/10.1016/j.arr.2016.03.003Google Scholar
Bialystok, E., Craik, F. I. M., Klein, R., & Viswanathan, M. (2004). Bilingualism, Aging, and Cognitive Control: Evidence From the Simon Task. Psychology and Aging, 19 (2), 290303. http://doi.org/10.1037/0882-7974.19.2.290Google Scholar
Bialystok, E., Craik, F., & Luk, G. (2008). Cognitive control and lexical access in younger and older bilinguals. Journal of Experimental Psychology: Learning, memory, and cognition, 34 (4), 859.Google Scholar
Bialystok, E., Martin, M. M., & Viswanathan, M. (2005). Bilingualism across the lifespan: The rise and fall of inhibitory control. International Journal of Bilingualism, 9 (1), 103119.10.1177/13670069050090010701Google Scholar
Bieri, J., Bradburn, W. M., & Galinsky, M. D. (1958). Sex differences in perceptual behavior. Journal of Personality, 26 (1), 112. http://doi.org/10.1111/j.1467-6494.1958.tb01566.xGoogle Scholar
Blumenfeld, H. K., & Marian, V. (2011). Bilingualism influences inhibitory control in auditory comprehension. Cognition, 118 (2), 245257. doi:10.1016/j.cognition.2010.10.012Google Scholar
Boone, K. B., Ghaffarian, S., Lesser, I. M., Hill‐Gutierrez, E., & Berman, N. G. (1993).Wisconsin Card Sorting Test performance in healthy, older adults: Relationship to age, sex, education, and IQ. Journal of Clinical Psychology, 49 (1), 5460.10.1002/1097-4679(199301)49:1<54::AID-JCLP2270490108>3.0.CO;2-63.0.CO;2-6>Google Scholar
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences. http://doi.org/10.1016/j.tics.2011.12.010Google Scholar
Braver, T. S., & West, R. (2008). Working memory, executive control, and aging. The handbook of aging and cognition, 3, 311372.Google Scholar
Brinton, R. D., Yao, J., Yin, F., Mack, W. J., & Cadenas, E. (2015). Perimenopause as a neurological transition state. Nature Reviews Endocrinology, 11 (7), 393405. http://doi.org/10.1038/nrendo.2015.82Google Scholar
Calvo, N., García, A. M., Manoiloff, L., & Ibáñez, A. (2016). Bilingualism and cognitive reserve: A critical overview and a plea for methodological innovations. Frontiers in Aging Neuroscience, 7, 249. http://doi.org/10.3389/fnagi.2015.00249Google Scholar
Chertkow, H., Whitehead, V., Phillips, N., Wolfson, C., Atherton, J., & Bergman, H. (2010). Multilingualism (but not always bilingualism) delays the onset of Alzheimer disease: Evidence from a bilingual community. Alzheimer Disease & Associated Disorders, 24 (2), 118125. http://doi.org/10.1097/WAD.0b013e3181ca1221Google Scholar
Christensen, H., Mackinnon, A. J., Korten, A. E., Jorm, A. F., Henderson, A. S., Jacomb, P., & Rodgers, B. (1999). An analysis of diversity in the cognitive performance of elderly community dwellers: Individual differences in change scores as a function of age. Psychology and Aging, 14 (3), 365379. http://doi.org/10.1037/0882-7974.14.3.365Google Scholar
Christoffels, I. K., Firk, C., & Schiller, N. O. (2007). Bilingual language control: An event-related brain potential study. Brain Research, 1147, 192208. doi:10.1016/j.brainres.2007.01.137Google Scholar
Clayson, P. E., Clawson, A., & Larson, M. J. (2011). Sex differences in electrophysiological indices of conflict monitoring. Biological Psychology, 87 (2), 282289. http://doi.org/10.1016/j.biopsycho.2011.03.011Google Scholar
Coderre, E. L., Smith, J. F., van Heuven, W. J. B., & Horwitz, B. (2016). The Functional Overlap of Executive Control and Language Processing in Bilinguals. Bilingualism: Language and Cognition, 19 (3), 471488. http://doi.org/10.1017/S1366728915000188Google Scholar
Colzato, L. S., Hertsig, G., van den Wildenberg, W. P. M., & Hommel, B. (2010). Estrogen modulates inhibitory control in healthy human females: Evidence from the stop-signal paradigm. Neuroscience, 167 (3), 709715. http://doi.org/10.1016/j.neuroscience.2010.02.029Google Scholar
Costa, A., & Sebastián-Gallés, N. (2014). How does the bilingual experience sculpt the brain? Nature Reviews Neuroscience, 15 (5), 336345. http://doi.org/10.1038/nrn3709Google Scholar
Daigneault, S., Braun, C. M. J., & Whitaker, H. A. (1992). Early effects of normal aging on perseverative and non‐perseverative prefrontal measures. Developmental Neuropsychology, 8 (1), 99114. http://doi.org/10.1080/87565649209540518Google Scholar
Davis, J. C., Marra, C. A., Najafzadeh, M., & Liu-Ambrose, T. (2010). The independent contribution of executive functions to health related quality of life in older women. BMC Geriatrics, 10 (1), 16. http://doi.org/1471-2318-10-16[pii]\r10.1186/1471-2318-10-16Google Scholar
de Bruin, A., Bak, T. H., & Della Sala, S. (2015). Examining the effects of active versus inactive bilingualism on executive control in a carefully matched non-immigrant sample. Journal of Memory and Language, 85, 1526. http://doi.org/10.1016/j.jml.2015.07.001Google Scholar
de Bruin, A., Della Sala, S., & Bak, T. H. (2016). The effects of language use on lexical processing in bilinguals. Language, Cognition and Neuroscience, 31 (8), 967974. http://doi.org/10.1080/23273798.2016.1190024Google Scholar
Dijkstra, T. (2005). Bilingual visual word recognition and lexical access. In Kroll, J. F. & de Groot, A. M. B. (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 179201). New York: Oxford University Press.Google Scholar
Duff, S. J., & Hampson, E. (2001). A sex difference on a novel spatial working memory task in humans. Brain and Cognition, 47 (3), 470–93. http://doi.org/10.1006/brcg.2001.1326Google Scholar
Evans, K. L., & Hampson, E. (2015). Sex-dependent effects on tasks assessing reinforcement learning and interference inhibition. Frontiers in Psychology, 6, 1044. http://doi.org/10.3389/fpsyg.2015.01044Google Scholar
Ferland, M. B., Ramsay, J., Engeland, C., & O'Hara, P. (1998). Comparison of the performance of normal individuals and survivors of traumatic brain injury on repeat administrations of the Wisconsin Card Sorting Test. Journal of clinical and experimental neuropsychology, 20 (4), 473482.Google Scholar
Festman, J., & Münte, T. F. (2012). Cognitive control in Russian-German bilinguals. Frontiers in Psychology, 3 (115). http://doi.org/10.3389/fpsyg.2012.00115Google Scholar
Finkel, D., Reynolds, C. A, McArdle, J. J., Gatz, M., & Pedersen, N. L. (2003). Latent growth curve analyses of accelerating decline in cognitive abilities in late adulthood. Developmental Psychology, 39 (3), 535550. http://doi.org/10.1037/0012-1649.39.3.535Google Scholar
Forte, R., Boreham, C. A. G., de Vito, G., & Pesce, C. (2015). Health and quality of life perception in older adults: The joint role of cognitive efficiency and functional mobility. International Journal of Environmental Research and Public Health, 12 (9), 1132811344. http://doi.org/10.3390/ijerph120911328Google Scholar
Fristoe, N. M., Salthouse, T. A., & Woodard, J. L. (1997). Examination of age-related deficits on the Wisconsin Card Sorting Test. Neuropsychology, 11 (3), 428436. http://doi.org/10.1037/0894-4105.11.3.428Google Scholar
Gathercole, V. C. M., Thomas, E. M., Kennedy, I., Prys, C., Young, N., Guasch, N. V., Roberts, E.J., Hughes, E.K., & Jones, L. (2014). Does language dominance affect cognitive performance in bilinguals? Lifespan evidence from preschoolers through older adults on card sorting, Simon, and metalinguistic tasks. Frontiers in Psychology, 5 (11). http://doi.org/10.3389/fpsyg.2014.00011Google Scholar
Geary, D. C., Saults, S. J., Liu, F., & Hoard, M. K. (2000). Sex differences in spatial cognition, computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 77 (4), 337353. http://doi.org/10.1006/jecp.2000.2594Google Scholar
Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., & Smith, C. D. (2013). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33 (2), 387396.10.1523/JNEUROSCI.3837-12.2013Google Scholar
Grady, C. L., Luk, G., Craik, F. I. M., & Bialystok, E. (2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170–81. http://doi.org/10.1016/j.neuropsychologia.2014.10.042Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.Google Scholar
Green, D. W. (2011). Language control in different contexts: the behavioral ecology of bilingual speakers. Frontiers in Psychology, 2. doi:10.3389/fpsyg.2011.00103Google Scholar
Green, P. S., & Simpkins, J. W. (2000). Neuroprotective effects of estrogens: potential mechanisms of action. International Journal of Developmental Neuroscience, 18 (4), 347358. http://doi.org/S0736-5748(00)00017-4[pii]Google Scholar
Guo, T., Liu, H., Misra, M., & Kroll, J. F. (2011). Local and global inhibition in bilingual word production: fMRI evidence from Chinese-English bilinguals. NeuroImage, 56 (4), 23002309. doi:10.1016/j.neuroimage.2011.03.049Google Scholar
Halari, R., Hines, M., Kumari, V., Mehrotra, R., Wheeler, M., Ng, V., & Sharma, T. (2005). Sex differences and individual differences in cognitive performance and their relationship to endogenous gonadal hormones and gonadotropins. Behavioral Neuroscience, 119 (1), 104117. http://doi.org/10.1037/0735-7044.119.1.104Google Scholar
Halari, R., & Kumari, V. (2005). Comparable cortical activation with inferior performance in women during a novel cognitive inhibition task. Behavioural Brain Research, 158 (1), 167173. http://doi.org/10.1016/j.bbr.2004.08.022Google Scholar
Hartman, M., Bolton, E., & Fehnel, S. E. (2001). Accounting for age differences on the Wisconsin Card Sorting Test: decreased working memory, not inflexibility. Psychology and Aging, 16 (3), 385399. http://doi.org/10.1037/0882-7974.16.3.385Google Scholar
Head, D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2009). Age differences in perseveration: Cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia, 47 (4), 12001203. http://doi.org/10.1016/j.neuropsychologia.2009.01.003Google Scholar
Hyde, J. S. (1981). How large are cognitive gender differences? A meta-analysis using!w2 and d.. American Psychologist, 36 (8), 892901. http://doi.org/10.1037/0003-066X.36.8.892Google Scholar
Ihle, A., Oris, M., Fagot, D., & Kliegel, M. (2016). The relation of the number of languages spoken to performance in different cognitive abilities in old age. Journal of Clinical and Experimental Neuropsychology, 38 (10), 11031114. http://doi.org/10.1080/13803395.2016.1197184Google Scholar
Janicki, S. C., & Schupf, N. (2010). Hormonal influences on cognition and risk for Alzheimer's disease. Current Neurology and Neuroscience Reports. http://doi.org/10.1007/s11910-010-0122-6Google Scholar
Karlsson, P., Thorvaldsson, V., Skoog, I., Gudmundsson, P., & Johansson, B. (2015). Birth cohort differences in fluid cognition in old age: Comparisons of trends in levels and change trajectories over 30 years in three population-based samples. Psychology and Aging. http://doi.org/10.1037/a0038643Google Scholar
Katzman, R., Brown, T., Fuld, P., Peck, A., Schechter, R., & Schimmel, H. (1983). Validation of a short orientation-memory-concentration test of cognitive impairment. The American Journal of Psychiatry, 140 (6), 734739. http://doi.org/10.1176/ajp.140.6.734Google Scholar
Kavé, G., Eyal, N., Shorek, A., & Cohen-Mansfield, J. (2008). Multilingualism and cognitive state in the oldest old. Psychology and Aging, 23 (1), 7078. http://doi.org/10.1037/0882-7974.23.1.70Google Scholar
Keenan, P. A., Ezzat, W. H., Ginsburg, K., & Moore, G. J. (2001). Prefrontal cortex as the site of estrogen's effect on cognition. Psychoneuroendocrinology, 26 (6), 577590.Google Scholar
Kirk, N. W., Fiala, L., Scott-Brown, K. C., & Kempe, V. (2014). No evidence for reduced Simon cost in elderly bilinguals and bidialectals. Journal of Cognitive Psychology, 26 (6), 640648. http://doi.org/10.1080/20445911.2014.929580Google Scholar
Klein, D., Mok, K., Chen, J. K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain and language, 131, 2024.10.1016/j.bandl.2013.05.014Google Scholar
Kousaie, S., & Phillips, N. A. (2012). Ageing and bilingualism: Absence of a “bilingual advantage” in Stroop interference in a nonimmigrant sample. The Quarterly Journal of Experimental Psychology, 65 (2), 356369. http://doi.org/10.1080/17470218.2011.604788Google Scholar
Kousaie, S., Sheppard, C., Lemieux, M., Monetta, L., & Taler, V. (2014). Executive function and bilingualism in young and older adults. Frontiers in Behavioral Neuroscience, 8 (250). http://doi.org/10.3389/fnbeh.2014.00250Google Scholar
Kroll, J. F., & Bialystok, E. (2013). Understanding the Consequences of Bilingualism for Language Processing and Cognition. Journal of Cognitive Psychology, 25 (5), 497514. http://doi.org/10.1080/20445911.2013.799170Google Scholar
Kroll, J. F., Bobb, S. C., & Hoshino, N. (2014). Two Languages in Mind: Bilingualism as a Tool to Investigate Language, Cognition, and the Brain. Current Directions in Psychological Science, 23 (3), 159163. http://doi.org/10.1177/0963721414528511Google Scholar
Kroll, J. F., Bobb, S. C., Misra, M., & Guo, T. (2008). Language selection in bilingual speech: Evidence for inhibitory processes. Acta Psychologica, 128 (3), 416430. doi:10.1016/j.actpsy.2008.02.001Google Scholar
Kuptsova, S. V., Ivanova, M. V., Petrushevsky, A. G., Fedina, O. N., & Zhavoronkova, L. A.(2015). Sex-related differences in task switching: An fMRI study. Human Physiology, 41 (6), 611624.Google Scholar
Li, C. S., Zhang, S., Duann, J. R., Yan, P., Sinha, R., & Mazure, C. M. (2009). Gender differences in cognitive control: An extended investigation of the stop signal task. Brain Imaging and Behavior, 3 (3), 262276. http://doi.org/10.1007/s11682-009-9068-1Google Scholar
Libben, M. R., & Titone, D. A. (2009). Bilingual lexical access in context: evidence from eye movements during reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35 (2), 381390.Google Scholar
Luk, G., & Bialystok, E. (2013). Bilingualism is not a categorical variable: Interaction between language proficiency and usage. Journal of Cognitive Psychology, 25 (5), 605621. http://doi.org/10.1080/20445911.2013.795574Google Scholar
Luk, G., De Sa, E., & Bialystok, E. (2011). Is there a relation between onset age of bilingualism and enhancement of cognitive control?. Bilingualism: Language and Cognition, 14 (4), 588595. http://doi.org/10.1017/S1366728911000186Google Scholar
Macizo, P., Bajo, T., & Martin, M. C. (2010). Inhibitory processes in bilingual language comprehension: Evidence from Spanish-English interlexical homographs. Journal of Memory and Language, 63 (2), 232244. doi:10.1016/j.jml.2010.04.002Google Scholar
Maitland, S. B., Herlitz, A., Nyberg, L., Bäckman, L., & Nilsson, L.-G. (2004). Selective sex differences in declarative memory. Memory & Cognition, 32 (7), 11601169. http://doi.org/10.3758/BF03196889Google Scholar
Martin, M. C., Macizo, P., & Bajo, T. (2010). Time course of inhibitory processes in bilingual language processing. British Journal of Psychology, 101, 679693. doi:10.1348/000712609x480571Google Scholar
McCarrey, A. C., An, Y., Kitner-Triolo, M. H., Ferrucci, L., & Resnick, S. M. (2016). Sex Differences in Cognitive Trajectories in Clinically Normal Older Adults. Psychology and Aging, 31 (1), 166175. http://doi.org/10.1037/pag0000070Google Scholar
Mercier, J., Pivneva, I., & Titone, D. (2014). Individual differences in inhibitory control relate to bilingual spoken word processing. Bilingualism: Language and Cognition, 17 (1), 89117.Google Scholar
Meuter, R. F. I., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40 (1), 2540.Google Scholar
Misra, M., Guo, T., Bobb, S. C., & Kroll, J. F. (2012). When bilinguals choose a single word to speak: Electrophysiological evidence for inhibition of the native language. Journal of Memory and Language, 67 (1), 224237. doi:10.1016/j.jml.2012.05.001Google Scholar
Miyake, A., & Friedman, N. P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Current Directions in Psychological Science, 21 (1), 814. http://doi.org/10.1177/0963721411429458Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognitive Psychology, 41 (1), 49100. http://doi.org/10.1006/cogp.1999.0734Google Scholar
Mueller, S. T., & Piper, B. J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. Journal of Neuroscience Methods, 222, 250259. http://doi.org/10.1016/j.jneumeth.2013.10.024Google Scholar
Mungas, D., Beckett, L., Harvey, D., Farias, S. T., Reed, B., Carmichael, O., Olichney, J., Miller, J., & DeCarli, C. (2010). Heterogeneity of Cognitive Trajectories in Diverse Older Person. Psychology and Aging, 25 (3), 606619. http://doi.org/10.1037/a0019502Google Scholar
Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: a critical update. Brain and cognition, 71 (3), 437451.Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9 (1), 97113.10.1016/0028-3932(71)90067-4Google Scholar
Perquin, M., Vaillant, M., Schuller, A. M., Pastore, J., Dartigues, J. F., Lair, M. L., & Diederich, N. (2013). Lifelong Exposure to Multilingualism: New Evidence to Support Cognitive Reserve Hypothesis. PLoS ONE, 8 (4). http://doi.org/10.1371/journal.pone.0062030Google Scholar
Pivneva, I., Mercier, J., & Titone, D. (2014). Executive control modulates cross-language lexical activation during L2 reading: evidence from eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 787796. doi:10.1037/a0035583Google Scholar
Pivneva, I., Palmer, C., & Titone, D. (2012). Inhibitory control and L2 proficiency modulate bilingual language production: evidence from spontaneous monologue and dialogue speech. Frontiers in Psychology, 3. doi:ARTN 57 10.3389/fpsyg.2012.00057Google Scholar
Prior, A., & Gollan, T. H. (2013). The elusive link between language control and executive control: A case of limited transfer. Journal of Cognitive Psychology, 25 (5), 622645. http://doi.org/10.1080/20445911.2013.821993Google Scholar
R Development Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.Google Scholar
Rajah, M. N., Wallace, L. M., Ankudowich, E., Yu, E. H., Swierkot, A., Patel, R., Chakravarty, M. M, Naumova, D., Pruessner, J., Joober, R., Gauthier, S., & Pasvanis, S. (2017). Family history and APOE4 risk for Alzheimer's disease impact the neural correlates of episodic memory by early midlife. NeuroImage: Clinical, 14, 760774.10.1016/j.nicl.2017.03.016Google Scholar
Reimers, S., & Maylor, E. A. (2005). Task switching across the life span: effects of age on general and specific switch costs. Developmental Psychology, 41 (4), 661671. http://doi.org/10.1037/0012-1649.41.4.661Google Scholar
Rhodes, M. G. (2004). Age-Related Differences in Performance on the Wisconsin Card Sorting Test: A Meta-Analytic Review. Psychology and Aging, 19 (3), 482494. http://doi.org/10.1037/0882-7974.19.3.482Google Scholar
Roivainen, E. (2011). Gender differences in processing speed: A review of recent research. Learning and Individual Differences, 21 (2), 145149. http://doi.org/10.1016/j.lindif.2010.11.021Google Scholar
Salthouse, T. A. (2009). Decomposing age correlations on neuropsychological and cognitive variables. Journal of the International Neuropsychological Society: JINS, 15 (5), 650661. http://doi.org/10.1017/S1355617709990385Google Scholar
Salthouse, T. A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society: JINS, 16 (5), 754760. http://doi.org/10.1017/S1355617710000706Google Scholar
Scarmeas, N., & Stern, Y. (2003). Cognitive Reserve and Lifestyle. Journal of Clinical and Experimental Neuropsychology. http://doi.org/10.1076/jcen.25.5.625.14576Google Scholar
Shanmugan, S., & Epperson, C. N. (2014). Estrogen and the prefrontal cortex: Towards a new understanding of estrogen's effects on executive functions in the menopause transition. Human Brain Mapping, 35 (3), 847865. http://doi.org/10.1002/hbm.22218Google Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8 (3), 448460. http://doi.org/10.1017/S1355617702813248Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47 (10), 20152028. http://doi.org/10.1016/j.neuropsychologia.2009.03.004Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11 (11), 10061012. http://doi.org/10.1016/S1474-4422(12)70191-6Google Scholar
Stoet, G. (2010). Sex differences in the processing of flankers. Quarterly Journal of Experimental Psychology (2006), 63 (4), 633–8. http://doi.org/10.1080/17470210903464253Google Scholar
Stoet, G., O'Connor, D. B., Conner, M., & Laws, K. R. (2013). Are women better than men at multi-tasking?. BMC Psychology, 1 (1), 18.Google Scholar
Stuss, D. T. (2011). Functions of the frontal lobes: relation to executive functions. Journal of the International Neuropsychological Society: JINS, 17 (5), 759–65. http://doi.org/10.1017/S1355617711000695Google Scholar
Sullivan Mitchell, E., & Fugate Woods, N. (2001). Midlife women's attributions about perceived memory changes: observations from the Seattle Midlife Women's Health Study. Journal of women's health & gender-based medicine, 10 (4), 351362.10.1089/152460901750269670Google Scholar
Tao, L., Marzecová, A., Taft, M., Asanowicz, D., & Wodniecka, Z. (2011). The efficiency of attentional networks in early and late bilinguals: the role of age of acquisition. Frontiers in psychology, 2.Google Scholar
Titone, D., & Baum, S. (2014). The future of bilingualism research: Insufferably optimistic and replete with new questions. Applied Psycholinguistics, 35 (5), 933942. http://doi.org/10.1017/S0142716414000289Google Scholar
Titone, D., Gullifer, J., Subramaniapillai, S., Rajah, N., & Baum, S. (2017). History-inspired reflections on the Bilingual Advantages Hypothesis. Growing Old with Two Languages: Effects of Bilingualism on Cognitive Aging, 53, 265.Google Scholar
Titone, D., Libben, M., Mercier, J., Whitford, V., & Pivneva, I. (2011). Bilingual lexical access during L1 sentence reading: The effects of L2 knowledge, semantic constraint, and L1–L2 intermixing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37 (6), 14121431.Google Scholar
Tucker, A. M., & Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8 (4), 354–60. http://doi.org/10.2174/1567211212225912050Google Scholar
Tun, P. A., & Lachman, M. E. (2009). Age Differences in Reaction time and Attention in a National Telephone Sample of Adults: Education, Sex, and Task Complexity Matter. Developmental Psychology, 44 (5), 14211429. http://doi.org/10.1037/a0012845.AgeGoogle Scholar
Valian, V. (2015). Bilingualism and cognition. Bilingualism: Language and Cognition, 18 (1), 324. http://doi.org/10.1017/S1366728914000522Google Scholar
Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25 (2), 343355. http://doi.org/10.1037/a0017729Google Scholar
Venables, W. N., & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0Google Scholar
Vingron, N., Gullifer, J., Hamill, J., Leimgruber, J. R. E., & Titone, D. (in press). Developing Eye Tracking Methods to Investigate Linguistic Landscape Processing: A Selective Review and Preliminary Data from Bilinguals Viewing Unilingual and Bilingual Signs. Linguistic Landscapes.Google Scholar
Von Bastian, C. C., Souza, A. S., & Gade, M. (2016). No evidence for bilingual cognitive advantages: A test of four hypotheses. Journal of Experimental Psychology: General, 145 (2), 246.Google Scholar
von Studnitz, R. E., & Green, D. W. (2002). The cost of switching language in a semantic categorization task. Bilingualism: Language and Cognition, 5 (3), 241251. doi:10.1017/s1366728902003036Google Scholar
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of Sex Differences in Spatial Abilities: A Meta-Analysis and Consideration of Critical Variables. Psychological Bulletin, 117 (2), 250270. http://doi.org/10.1037/0033-2909.117.2.250Google Scholar
Wilson, R. S., Beckett, L. A., Barnes, L. L., Schneider, J. A., Bach, J., Evans, D. A., & Bennett, D. A. (2002). Individual differences in rates of change in cognitive abilities of older persons. Psychology and Aging, 17 (2), 179193. http://doi.org/10.1037/0882-7974.17.2.179Google Scholar
Xu, Q., Lang, C. P., & Rooney, N. (2014). A systematic review of the longitudinal relationships between subjective sleep disturbance and menopausal stage. Maturitas, 79 (4), 401412.Google Scholar
Yeudall, L. T., Fromm, D., Reddon, J. R., & Stefanyk, W. O. (1986). Normative data stratified by age and sex for 12 neuropsychological tests. Journal of Clinical Psychology, 42 (6), 918946.Google Scholar
Yudes, C., Macizo, P., & Bajo, T. (2011). The influence of expertise in simultaneous interpreting on non-verbal executive processes. Frontiers in Psychology, 2 (309). http://doi.org/10.3389/fpsyg.2011.00309Google Scholar
Zahodne, L. B., Schofield, P. W., Farrell, M. T., Stern, Y., & Manly, J. J. (2014). Bilingualism Does Not Alter Cognitive Decline or Dementia Risk among Spanish-Speaking Immigrants. Neuropsychology, 28 (2), 238246. http://doi.org/10.1037/neu0000014Google Scholar
Zelinski, E. M., Gilewski, M. J., & Schaie, K. W. (1993). Individual differences in cross-sectional and 3-year longitudinal memory performance across the adult life span. Psychology and Aging, 8 (2), 176186. http://doi.org/10.1037/0882-7974.8.2.176Google Scholar
Zhou, B., & Krott, A. (2016). Bilingualism enhances attentional control in non-verbal conflict tasks–evidence from ex-Gaussian analyses. Bilingualism: Language and Cognition, 1–19.Google Scholar