Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T17:13:59.220Z Has data issue: false hasContentIssue false

Using big data to map the network organization of the brain

Published online by Cambridge University Press:  26 February 2014

James E. Swain
Affiliation:
Department of Psychiatry, University of Michigan School of Medicine, Ann Arbor, MI 48109. [email protected]://www2.med.umich.edu/psychiatry/psy/fac_query4.cfm?link_name=jamesswa Department of Psychology, University of Michigan, Ann Arbor, MI 48105 Child Study Center, Yale University School of Medicine, New Haven, CT 06520
Chandra Sripada
Affiliation:
Department of Psychiatry, University of Michigan School of Medicine, Ann Arbor, MI 48109. [email protected]://www2.med.umich.edu/psychiatry/psy/fac_query4.cfm?link_name=jamesswa Department of Philosophy, University of Michigan, Ann Arbor, MI 48105. [email protected]://www.lsa.umich.edu/philosophy/people/faculty/ci.sripadachandra_ci.detail
John D. Swain
Affiliation:
Department of Physics, Northeastern University, Boston, MA 02115. [email protected]://www.physics.neu.edu/Department/Vtwo/faculty/swain.htm

Abstract

The past few years have shown a major rise in network analysis of “big data” sets in the social sciences, revealing non-obvious patterns of organization and dynamic principles. We speculate that the dependency dimension – individuality versus sociality – might offer important insights into the dynamics of neurons and neuronal ensembles. Connectomic neural analyses, informed by social network theory, may be helpful in understanding underlying fundamental principles of brain organization.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, R. & Barabási, A. L. (2002) Statistical mechanics of complex networks. Reviews of Modern Physics 74(1):4797.Google Scholar
Barabási, A.-L. & Albert, R. (1999) Emergence of scaling in random networks. Science 286(5439):509–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10521342.Google Scholar
Behrens, T. E. & Sporns, O. (2012) Human connectomics. Current Opinion in Neurobiology 22(1):144–53. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21908183 Google Scholar
Binder, K. & Young, A. P. (1986) Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58(4):801976.Google Scholar
Bullmore, E. & Sporns, O. (2012) The economy of brain network organization. Nature Reviews Neuroscience 13(5):336–49. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22498897 Google Scholar
Erdös, P. & Renyí, A. (1960) On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5:1761.Google Scholar
Leckman, J. F., Feldman, R., Swain, J. E., Eicher, V., Thompson, N. & Mayes, L. C. (2004) Primary parental preoccupation: Circuits, genes, and the crucial role of the environment. Journal of Neural Transmission 111(7):753–71.Google Scholar
Mayes, L. C., Swain, J. E. & Leckman, J. F. (2005) Parental attachment systems: Neural circuits, genes, and experiential contributions to parental engagement. Clinical Neuroscience Research 4(5/6):301–13. doi: 10.1016/j.cnr.2005.03.009.Google Scholar
Sporns, O. (2012) From simple graphs to the connectome: Networks in neuroimaging. Neuroimage 62(2):881–86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21964480 Google Scholar
Sporns, O., Tononi, G. & Edelman, G. M. (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behavioral and Brain Science 135 (1–2):6974. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12356436 Google Scholar
Sripada, C., Angstadt, M., Kessler, D., Phan, K. L., Liberzon, I., Evans, G. W., Welsh, R., Kim, P. & Swain, J. E. (2013) Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks. Neuroimage 89:110–21. doi: 10.1016/j.neuroimage.2013.11.006. [Epub ahead of print]Google Scholar
Supekar, K. & Menon, V. (2012) Developmental maturation of dynamic causal control signals in higher-order cognition: A neurocognitive network model. PLoS Computational Biology 8(2): e1002374. Available at: http://dx.plos.org/10.1371/journal.pcbi.1002374.t001.Google Scholar
Swain, J. E. (2011) The human parental brain: In vivo neuroimaging. Progress in Neuro-Psychopharmacology and Biological Psychiatry 35(5):1242–54. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21036196 Google Scholar
Swain, J. E., Kim, P. & Ho, S. S. (2011) Neuroendocrinology of parental response to baby-cry. Journal of Neuroendocrinology 23(11):10361041. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21848646 Google Scholar
Swain, J. E., Konrath, S., Brown, S. L., Finegood, E. D., Akce, L. B., Dayton, C. J. & Ho, S. S. (2012) Parenting and beyond: Common neurocircuits underlying parental and altruistic caregiving. Parenting Science and Practice 12 (2–3):115–23. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22971776 Google Scholar
Swain, J. E. & Lorberbaum, J. P. (2008) Imaging the human parental brain. In: Neurobiology of the parental brain, ed. Bridges, R., pp. 83100. Academic Press.Google Scholar
Swain, J. E., Mayes, L. C. & Leckman, J. F. (2004) The development of parent-infant attachment through dynamic and interactive signaling loops of care and cry. Behavioral and Brain Sciences 27(4):472–73.Google Scholar
Watts, D. J. & Strogatz, S. H. (1998) Collective dynamics of “small-world' networks. Nature 393(6684):440–42. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9623998 Google Scholar
Yu, S., Huang, D., Singer, W. & Nikolić, D. (2008) A small world of neuronal synchrony. Cerebral Cortex 18(12):2891–901. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18400792 Google Scholar