Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T05:20:47.411Z Has data issue: false hasContentIssue false

A functional consideration of anatomical connections between the basal ganglia and the thalamus suggests that antipsychotic drugs inhibit the initiation of movement

Published online by Cambridge University Press:  04 February 2010

Sven Ahlenius
Affiliation:
Research and Development Laboratories-Pharmacology, Astra Läkemedal AB, S-15185 Södertälje, Sweden

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Commentary
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlenius, S. (1973) Inhibition of catecholamine synthesis and conditioned avoidance acquisition. Pharmacology. Biochemistry and Behavior 1:347–50. [SA]CrossRefGoogle ScholarPubMed
Ahlenius, S. (1978) Potentiation by haloperidol of the catalepsy produced by lesions in the parafascicular nucleus of the rat. Brain Research 150:646–52. [SA]CrossRefGoogle ScholarPubMed
Ahlenius, S. (1979) An analysis of behavioural effects produced by drug-induced changes in dopaminergie neurotransmission in the brain. Scandinavian Journal of Psychology 20:5964. [SA, rRAW]CrossRefGoogle Scholar
Ahlenius, S. (1980) Enhanced suppression of a. conditioned avoidance response by haloperidol but not phenoxyhenzamine in rats with bilateral parafaseieular lesions. Experimental Brain Research 40:164–69. [SA]CrossRefGoogle Scholar
Ahlenius, S. & Engel, J.(1971) Effects of small doses of haloperidol on timing behaviour. Journal of Pharmacy and Pharmacology 23:301–2. [SA]CrossRefGoogle Scholar
Ahlenius, S., Engel, J. & Zöller, M. (1977) Effects of apomorphine and haloperidol on exploratory behavior and latent learning in mice. Physiological Psychology 5:290–94. [SA]CrossRefGoogle Scholar
Anlezark, C. M., Arbuthnott, G. W., Christie, J. E., & Crow, T. J. (1971) Role of cerebral dopamine in the action of psychotropie drugs. British Journal of Pharmacology 41:406P. [TJC]Google ScholarPubMed
Atalay, J., Bozarth, M. A. & Wise, R. A. (1982) Task-independent reward and performance shifts from phnozide in self-stimulationg rats. Paper presented at the annual meeting of the Canadian Psychological Association. Montreal. [rRAW]Google Scholar
Atrens, D. M. (1970) Reinforeing and emotional consequences of electrical self-stimulation of the subcortical limbic forebrain. Physiology and Behavior 5:1461–71. [AJG]CrossRefGoogle ScholarPubMed
Atrens, D. M., Ljungberg, T. & Ungerstedt, U.(1976). Modulation of reward and aversion processes in the rat diencephalon by neuroleptics: Differential effects of clozapine and haloperidol. Psychopharmacology 49:97100. [AJC]CrossRefGoogle ScholarPubMed
Beninger, R. J. (1982) The behavioral function of dopamine. Behavioral and Brain Sciences 5:5556. [rRAW]CrossRefGoogle Scholar
Beninger, R. J. (1983) The role of dopamine in locomotor activity and learning. Brain Research Reviews 6:173–96. [rRAW]CrossRefGoogle Scholar
Bindra, D. (1974) A motivational view of learning, performance. and behavior modification. Psychological Review 81:199213. [rRAW]CrossRefGoogle ScholarPubMed
Bindra, D. (1978) How adaptive behaviour is produced: A perceptual-motivational alternative to response-reinforcement. Behavioral and Brain Sciences 1:4191. [rRAW]CrossRefGoogle Scholar
Bolles, R. C. (1972) Reinforcement, expectancy, and learning. Psychological Review 79:394409. [rRAW]CrossRefGoogle Scholar
Bradley, P. B. (1958) The central action of certain drugs in relation to the reticular formation. In: Reticular formation of the Brain, ed. Jasper, A. H., Proctor, L. D., Knighton, R. S.. Noshay, W. C. & Costello, R. T.. Little Brown & Co. [CK]Google ScholarPubMed
Cabanac, M. (1971) Physiological role of pleasure. Science 173:1103–07. [rRAW]CrossRefGoogle ScholarPubMed
Cabanac, M. (1979) Sensorv pleasure. Quarterly Review of Biology 54:129. [EK]CrossRefGoogle ScholarPubMed
Coons, E. E. & White, H. A. (1977) Tonic properties of orosensation and the modulation of intracranial self-stimulation: The CNS weighting of external and internal factors governing reward. Annals of the Sew York Academy of Sciences 290:158–79. [EK]CrossRefGoogle ScholarPubMed
Cooper, B. R., Cott, J. M. & Breese, G. R. (1974) Effects of catecholaminedepleting drugs and amphetamine on self-stimulation of brain following various 6-hydroxydopamine treatments. Psychopharmacologia 248:235–48. [rRAW]CrossRefGoogle Scholar
Coppen, A., Metealfe, M., Carroll, J. D. & Morris, J. G. L. (1972) Levodopa and L-tryptophan therapy in Parkinsonism. Lancet 1:654–58. [TJC]CrossRefGoogle ScholarPubMed
Crow, T. J. (1968) Cortical synapses and reinforcement: A hypothesis. Nature 219:736–37. [TJC]CrossRefGoogle ScholarPubMed
Crow, T. J. (1971) The relation between electrical self-stimulation sites and catecholamine-containing neurones in the rat mesencephalon. Experientia 27:662. [TJC]CrossRefGoogle ScholarPubMed
Crow, T. J. (1972b) A map of the rat mesencephalon for electrical self-stimulation. Brain Research 36:265–73. [TJC]CrossRefGoogle ScholarPubMed
Crow, T. J. (1973) Catecholamine-containing neurones and electrical self-stimulation. 2. A theoretical interpretation and some psychiatric implications. Psychological Medicine 3:6673. [TJC, rRAW]CrossRefGoogle ScholarPubMed
Crow, T. J. (1972a) Catecholamine-containing neurones and electrical self-stimulation. I. A review of some data. Psychological Medicine 2:414–21. [TC]CrossRefGoogle Scholar
Crow, T. J. (1979) Catecholamine reward pathways and sehizophrenia: The mechanism of the antipsychotic effects and the site of the primary disturbance. Federation Proceedings 38:2462–67. [CK]Google ScholarPubMed
Crow, T. J. & Wendlaudt, S. (1976) Impaired acquisition of a passive avoidance response after lesions induced in the locus coerulcus by 6-OM-dopamine. Suture 259:4244. [TJC]Google Scholar
Edmonds, D. E. & Gallistel, C. R. (1974) Parametric analysis of brain stimulation reward in the rat: 3. Effect of performance variables on the reward summation function. Journal of Comparative and Physiological Psychology 87:876–83. [rRAW]CrossRefGoogle Scholar
Esposito, R. U., Faulkner, W. & Kometsky, C. (1979) Specific modulation of brain stimulation reward by haloperidol. Pharmacology, Biochemistry and Behavior 10:937–40. [rRAW]CrossRefGoogle ScholarPubMed
Ettenberg, A. (1982) Behavioral effects of neuroleptics: Performance deficits, reward deficits or both? Behavioral and Brain Sciences 5:5657. [rRAW]CrossRefGoogle Scholar
Ettenberg, A., Koob, C. G. & Bloom, F. E. (1981) Response artificact in the measurement of neuroleptic-induced anhedonia. Science 209: 357–59. [TS]CrossRefGoogle Scholar
Fantie, B. D. & Nakajíma, S. (1984) A task for assessing brain stimulation with minimum motor involvement. Paper presented at the annual meeting of the Canadian Psychological Association, Ottawa. [rRAW]Google Scholar
Fouriezos, G., Hansson, P. & Wise, R. A. (1978) Neuroleptie-indnced attenuation of brain stimulation reward. Journal of Comparative and Physiological Psychology 92:659–69. [GF, rRAW]CrossRefGoogle ScholarPubMed
Fouriezos, G. & Wise, R. A. (1976) Pimozide-induced extinction of intracranial self-stimulation: Response patterns rule out motor or performance deficits. Brain Research 103:377–80. [GF, rRAW]CrossRefGoogle ScholarPubMed
Fowler, S. C., Filcwieh, R. J. & Leberer, M. R. (1977) Drug effects upon force and duration of response during fixed-ratio performance in rats. Pharmacology, Biochemistry and Behavior 6:421–26. [AJG]CrossRefGoogle ScholarPubMed
Franklin, K. B. J. (1978) Catecholamines and self-stimulation: Reward and performance deficits dissociated. Pharmacology, Biochemistry and Behavior 9:813–20. [rRAW]CrossRefGoogle Scholar
Franklin, K. B. J. & McCoy, S. N. (1979) Pimozide-induced extinction in rats: Stimulus control of responding rules out motor deficit. Pharmacology, Biochemistry and Behavior 11:7176. [GF, rRAW]CrossRefGoogle ScholarPubMed
Freed, W. J. & Zee, R. F. (1982) Criteria for ruling out sedation as an interpretation of neuroleptic effects. Behavioral and Brain Sciences 5:5759. [GF]CrossRefGoogle Scholar
Gallistel, C. R. (1983) The empirical and theoretical justification for the use of the curve-shift method in drug and lesion experiments. Paper presented at the Society for Neuroseience Sattelite Symposium: ESB and Brain Mechanisms of reward, Boston. [rRAW]Google Scholar
Gallistel, C. R., Boytim, M., Gomita, Y. & Klebanoff, L. (1982) Docs pimozide block the reinforcing effect of brain stimulation? Pharmacology, Biochemistry and Behavior 17:769–81. [rRAW]CrossRefGoogle Scholar
Gallistel, C. R., Shizgal, P. & Yeomans, J. (1981) A portrait of the substrate for self-stimulation. Psychological Review 88:228–73.CrossRefGoogle ScholarPubMed
Gerber, G. J., Sing, J. & Wise, R. A. (1981) Pimozide attenuates lever pressing for water in rats. Pharmacology, Biochemistry and Behavior 14:201–05. [rRAW]CrossRefGoogle ScholarPubMed
German, D. C. (1982) Dopamine neurons, reward and behavior. Behavioral and Brain Sciences 5:5960. [rRAW]CrossRefGoogle Scholar
German, D. C. & Bowden, D. M. (1974) Catecholamine systems as the neural substrate for intracranial self-stimulation: A hypothesis. Brain Research 73:381419. [rRAW]CrossRefGoogle ScholarPubMed
Gramling, S. E., Fowler, S. C. & Collins, K. R. (1984) Nondeprived animals lieking a sucrose solution fail to exhibit “anhedonia” with repeated administrations of pimozide. Pharmacology, Biochemistry and Behavior. In press. [rRAW]Google Scholar
Gray, T. & Wise, R. A. (1980) Effects of pimozide on lever-pressing behavior maintained on an intermittent reinforcement schedule. Pharmacology, Biochemistry and Behavior 12:931–35. [rRAW]CrossRefGoogle Scholar
Greenshaw, A. J. (1981) Effects of drugs on reward in rats. Ph.D. thesis. University of Wales. [AJG]Google Scholar
Greenshaw, A. J., Sanger, D. J. & Blackman, D. E. (1981) The effects of pimozide and of reward omission on fixed-interval behaviour of rats maintained by food and electrical brain stimulation. Pharmacology, Biochemistry and Behavior 15:227–33. [AJG]CrossRefGoogle ScholarPubMed
Greenshaw, A. J.(1983). The effects of ehlordiazepoxide on the self-regulated duration of lateral hypothalamic stimulation in rats. Psychophannacology 81:236–38. [AJG]CrossRefGoogle ScholarPubMed
Gunne, L. M., Anggard, E. & Jonsson, L. E. (1972) Clinical trials with amphetamine-blocking drugs. Psychiatria Neurologia Neurochirurgia 75:225–26. [rRAW]Google ScholarPubMed
Herberg, L. J., Stephens, D. N. & Franklin, K. B. J. (1976) Catecholamines and self-stimulation: Evidence suggesting a reinforcing role for noradrenaline and a motivating role for dopamine. Pharmacology, Biochemistry and Behavior 4:575–82. [rRAW]CrossRefGoogle Scholar
Homykiewiez, O. (1976) Neurohumoral interactions and basal ganglia function and dysfunction. In: The basal ganglia, ed. Yahr, M. D.. Raven Press. [SA]Google Scholar
Huston, J. P., Grimm, C. & Omstein, K. (1984) Self-stimulation in the brain stem after ipsilateral precollicular deeerebration. Experimental Neurology 83:568–76. [TS]CrossRefGoogle Scholar
Katz, R. J. (1982) Dopamine and the limits of behavioral reduction or why aren't all schizophrenics fat and happy? Behavioral and Brain Sciences 5:6061. [rRAW]Google Scholar
Killam, K. F. & Killam, E. K. (1958) Drug action on pathways involving the reticular formation. In: Reticular formation of the brain, ed. Jasper, A. H., Proctor, L. D., Knighton, R. S., Noshay, W. C. & Costello, R. T.. Little Brown & Co. [CK]Google Scholar
Kornetsky, C. & Eliasson, M. (1969) Reticular stimulation and chlorpromazine: An animal model for schizophrenic overarousal. Science 165:1273–74. [CK]CrossRefGoogle ScholarPubMed
Kornetsky, C. & Markowitz, R. (1978) Animal models of schizophrenia. In: Psychophannacology: A generation of progress, ed. Lipton, M. A., DiMascio, A. & Killam, K. F.. Raven Press. [CK]Google Scholar
Kostarczyk, E. (1980) Autonomic changes accompanying instrumental responses and alimentary reinforcement. Seventh International Conference on the Physiology of Food and Fluid Intake “IUPS,” Warsaw. [EK]Google Scholar
Kostarczyk, E. & Fonberg, E. (1980) Tactile stimulation as an important factor involved in social motivation. Neurosciences Letters Supp. 5:S318 [EK]Google Scholar
Kostarczyk, E. (1982) Autonomic responses accompanying conditioned and unconditioned alimentary reactions in amygdalo-hypothalamically lesioned dogs. Acta Neurobiologiae Experimentalis 42:4358. [EK]Google ScholarPubMed
Kostarczyk, E. (1982) Characteristics of the heart rate in relation to the palatability of food in dogs. Appetite 3:321–28. [EK]CrossRefGoogle Scholar
Liebman, J. M. & Butcher, L. L. (1973) Effects on self-stimulation behavior of drugs influencing dopaminergic neurotransmission mechanisms. Naunyn-Schtnicdebcrg's Archives of Pharmacology 277:305–18. [rRAW]CrossRefGoogle ScholarPubMed
Liebman, J. M. & Butcher, L. L. (1974) Comparative involvement of dopamine and noradrenaline in rate-free self-stimulation in substantia nigra, lateral hypothalamus, and mesencephalic central gray. Naunyn Schmiedeberg's Archicves of Pharmacology 284:167194. [rRAW]CrossRefGoogle ScholarPubMed
Lippa, A. S., Antelman, S. M., Fisher, A. E. & Canfield, D. R. (1973) Neurochemical mediation of reward: A significant role for dopamine? Pharmacology, Biochemistry and Behavior 1:2328. [rRAW]CrossRefGoogle ScholarPubMed
Lyon, M. & Randrup, A. (1972) The dose-response effect of amphetamine upon avoidance behaviour in the rat seen as a function of increasing stereotypy. Psychopharmacologia 23:334–47. [AJG]CrossRefGoogle ScholarPubMed
Major, R. & White, N. (1978) Memory facilitation by self-stimulation reinforcement mediated by the nigro-neostriatal bundle. Physiology and Behavior 20:723–33. [rRAW]CrossRefGoogle ScholarPubMed
Malmo, R. B. & Malmo, H. P. (1982) Wise's neural model implicating the reticular formation: Some queries. Behavioral and Brain Sciences 5:6668. [rRAW]CrossRefGoogle Scholar
Marshall, J. F., Levitan, D. & Strieker, E. M. (1976) Activation-induced restoration of sensorimotor functions in rats with dopamine-depleting brain lesions. Journal of Comparative and Physiological Psychology, 90:536–46. [TJC]CrossRefGoogle ScholarPubMed
Mindham, R. H. S. (1970) Psychiatric symptoms in Parkinsonism. Journal of Neurology, Neurosurgery and Psychiatry 33:188–91. [TJC]CrossRefGoogle ScholarPubMed
Mogenson, G. J., Takigawa, M., Robertson, A. & Wu, M. (1979) Self stimulation of the nucleus accumbens and ventral tegmental area of Tsai attenuated by microinjections of spiroperidol into the nucleus accumbens. Brain Research 171:247–54. [AJG]CrossRefGoogle ScholarPubMed
Mowrer, O. H. (1960) Learning theory and behaviour. John Wiley and Sons. [EK]CrossRefGoogle Scholar
Neill, D. (1982) Problems of concept and vocabulary in the anhedonia hypothesis. Behavioral and Brain Sciences 5:70. [rRAW]CrossRefGoogle Scholar
Nemeroff, C. B. & Luttinger, D. (1982) The anhedonia hypothesis of neuroleptic drug action: Basic and clinical considerations. Behavioral and Brain Sciences 5:7071. [rRAW]CrossRefGoogle Scholar
Olds, J. & Milner, P. M. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology 47:419–27. [AJG, rRAW]CrossRefGoogle ScholarPubMed
Olds, J. & Travis, R. P. (1960) Effects of ehlorpromazine, meprobamate, pentobarbital and morphine on self-stimulation. Journal of Pharmacological and Experimental Therapeutics 128:397404. [TJC]Google ScholarPubMed
Olds, M. E. (1975) Effects of intraventricular 6-hydroxydopamine and replacement therapy with norepinephrine, dopamine and serotonin on self-stimulation in diencephalic and mesencephalic regions in the rat. Brain Research 98:327–42. [AJG]CrossRefGoogle ScholarPubMed
Panksepp, J. (1982) The pleasure in brain substrates of foraging. Behavioral and Brain Sciences 5:7172. [rRAW]CrossRefGoogle Scholar
Pickens, R. & Harris, W. C. (1968) Self-administration of d-amphetamine by rats. Psychopharmacologia 12:158–63. [rRAW]CrossRefGoogle ScholarPubMed
Rech, R. H. (1982) Neurolepsis: Anhedonia or blunting of emotional reactivity? Behavioral and Brain Sciences 5:7273. [rRAW]CrossRefGoogle Scholar
Redgrave, P. (1978) Modulation of intracranial self-stimulation behaviour by local perfusions of dopamine, noradrenaline and serotonin within the caudate nucleus and nucleus accumbens. Brain Research 155:277–95. [AJG]CrossRefGoogle ScholarPubMed
Robin, A. H. (1976) Depression in patients with Parkinsonism. British Journal of Psychiatry 128:141–45. [TJC]CrossRefGoogle Scholar
Sanger, D. J. (1978) Effects of d-amphetamine on temporal and spatial discrimination in rats. Psyclwphannacology 58:185–88. [AJG]CrossRefGoogle ScholarPubMed
Schaefer, G. J. & Michael, R. P. (1980) Acute effects of neuroleptics on brain self-stimulation thresholds in rats. Psychopharmacology 67:915. [rRAW]CrossRefGoogle ScholarPubMed
Seeman, P. (1980) Brain dopamine receptors. Pharmacological Reviews 32:229313. [SA]Google ScholarPubMed
Skinner, B. F. (1935a) The generic nature of the concepts of stimulus and response. Journal of General Psychology 12:4065. [rRAW]CrossRefGoogle Scholar
Skinner, B. F. (1935b) Two types of conditioned reflex and a pseudotype. Journal of General Psychology 12:6677. [rRAW]CrossRefGoogle Scholar
Solomon, P. R. & Crider, A. (1982) Attention, dopamine, and schizophrenia. Behavioral and Brain Sciences 5:7576. [rRAW]CrossRefGoogle Scholar
Soubrié, P. (1982) Neuroleptic-induced anhedonia: Some psychopharmacological implications. Behavioral and Brain Sciences 5:7677. [rRAW]CrossRefGoogle Scholar
Stein, L. (1978) Reward transmitters: Catecholamines and opioid peptides. In: Psychopharmacology: A generation of progress, ed. Lipton, M. A., Mascio, A. D. & Killam, K. F.. Raven Press. [AJG]Google Scholar
Stein, L. (1980) The chemistry of reward. In: Biology of reinforcement: Facets of brain stimulation reward, ed. Routtenberg, A.. Academic Press. [rRAW]Google Scholar
Stein, L. & Belluzzi, J. D. (1979) Brain endorphins: Possible role in reward and memory formation. Federation Proceedings 38:2468–72. [CK]Google ScholarPubMed
Stein, L. & Ray, O. S. (1960) Brain stimulation reward “thresholds” self-determined in rats. Psychopharmacologia 1:251–56. [AJG]CrossRefGoogle Scholar
Stein, L. & Wise, C. D. (1971) Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward systems by 6-hydroxydopainine. Science 171:1032–36. [CK]CrossRefGoogle Scholar
Stellar, J. R., Kelley, A. E. & Corbett, D. (1983) Effects of peripheral and central dopamine blockade on lateral hypothalamic self-stimulation: Evidence for both reward and motor deficits. Pharmacology, Biochemistry and Behavior 18:433–42. [rRAW]CrossRefGoogle ScholarPubMed
Thompson, R. (1963) Thalamic structures critical for retention of an avoidance conditioned response in rats. Journal of Comparative and Physiological Psychology 56:261–67. [SA]CrossRefGoogle ScholarPubMed
Ungerstedt, U. (1974) Brain dopamine neurons and behaviour. In: The neurosciences: Third study program, ed. Schmitt, F. O. & Worden, F. G.. MIT Press. [TJC]Google Scholar
Valenstein, E. S. (1964) Problems of measurement and interpretation with reinforcing brain stimulation. Psychological Review 71:415–37. [AJG, TS, rRAW]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1962) Medial thalamic functions in voluntary movement. Canadian Journal of Psychology 16:318–30. [SA]CrossRefGoogle Scholar
White, N. & Major, R. (1978) Effect of pimozide on the improvement in learning produced by self-stimulation and by water reinforcement. Pharmacology, Biochemistry and Behavior 8:565–71. [rRAW]CrossRefGoogle ScholarPubMed
Wise, R. A. (1978) Catecholamine theories of reward: A critical review. Brain Research 152:215–47. [AJG]CrossRefGoogle ScholarPubMed
Wise, R. A. (1978) Neuroleptic attenuation of intracranial self-stimulation: Reward of performance deficits? Life Science 22:535–42. IrRAW]CrossRefGoogle ScholarPubMed
Wise, R. A. (1982a) Hypotheses of neuroleptic action: Levels of progress. Behavioral and Brain Sciences 5:7882. [rRAW]CrossRefGoogle Scholar
Wise, R. A. (1982b) Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences 5:3953. [SA, TJC, AJG, CK, EK, TS, rRAW]CrossRefGoogle Scholar
Wise, R. A. & Colic, L. (1984) Pimozide attenuates free feeding: Best scores analysis reveals a motivational deficit. Psychophannacology 84: 446–51. [rRAW]CrossRefGoogle ScholarPubMed
Wise, R. A., Spindler, J., deWit, H. & Gerber, G. J. (1978a) Neurolepticinduced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 201:262–64. [rRAW]CrossRefGoogle ScholarPubMed
Wise, R. A., Spindler, J. & Legault, L. (1978b) Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Canadian Journal of Psychology 32:7785. [rRAW]CrossRefGoogle ScholarPubMed
Wyrwicka, W. (1975) The sensory nature of reward in instrumental behaviour. Pavlovian Journal of Biological Sciences 10:2351. [EK]CrossRefGoogle Scholar
Zarevics, P. & Setler, P. E. (1979) Simultaneous rate-independent and ratedependent assessment of intracranial self-stimulation: Evidence for the direct involvement of dopamine in brain reinforcement mechanisms. Brain Research 169:449512. [AJG, rRAW]CrossRefGoogle ScholarPubMed