Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T09:01:31.289Z Has data issue: false hasContentIssue false

Disentangling learning from knowing: Does associative learning ability underlie performances on cognitive test batteries?

Published online by Cambridge University Press:  15 August 2017

Jayden O. van Horik
Affiliation:
Centre for Research in Animal Behaviour, Washington Singer Laboratories, Department of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, United [email protected]@exeter.ac.ukwww.jayden-van-horik.blogspot.co.ukhttp://people.exeter.ac.uk/SEGLea/
Stephen E. G. Lea
Affiliation:
Centre for Research in Animal Behaviour, Washington Singer Laboratories, Department of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, United [email protected]@exeter.ac.ukwww.jayden-van-horik.blogspot.co.ukhttp://people.exeter.ac.uk/SEGLea/

Abstract

Are the mechanisms underlying variations in the performance of animals on cognitive test batteries analogous to those of humans? Differences might result from procedural inconsistencies in test battery design, but also from differences in how animals and humans solve cognitive problems. We suggest differentiating associative-based (learning) from rule-based (knowing) tasks to further our understanding of cognitive evolution across species.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Danforth, J. S., Chase, P. N., Dolan, M. & Joyce, J. H. (1990) The establishment of stimulus-control by instructions and by differential reinforcement. Journal of the Experimental Analysis of Behavior 54:97112. doi: 10.1901/jeab.1990.54-97.CrossRefGoogle ScholarPubMed
Fingerman, P. & Levine, M. (1974) Nonlearning: The completeness of the blindness. Journal of Experimental Psychology 102:720–21. doi: 10.1037/h0036096.Google Scholar
Hayes, S. C., Brownstein, A. J., Zettle, R. D., Rosenfarb, I. & Korn, Z. (1986) Rule-governed behavior and sensitivity to changing consequences of responding. Journal of the Experimental Analysis of Behavior 45(3):237–56. doi: 10.1901/jeab.1986.45-237.Google Scholar
Herrmann, E., Hernandez-Lloreda, M. V., Call, J., Hare, B. & Tomasello, M. (2010b) The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science 21(1):102–10.Google Scholar
Isden, J., Panayi, C., Dingle, C. & Madden, J. (2013) Performance in cognitive and problem-solving tasks in male spotted bowerbirds does not correlate with mating success. Animal Behaviour 86(4):829–38. doi: 10.1016/j.anbehav.2013.07.024.Google Scholar
Keagy, J., Savard, J. F. & Borgia, G. (2011) Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Animal Behaviour 81(5):1063–70.Google Scholar
Köhler, W. (1925) The mentality of apes. Kegan Paul, Trench, Trubner.Google Scholar
Lea, S. E. G. & Wills, A. J. (2008) Use of multiple dimensions in learned discriminations. Comparative Cognition & Behavior Reviews 3:115–33. doi: 10.3819/ccbr.2008.30007.CrossRefGoogle Scholar
Lea, S. E. G., Wills, A. J., Leaver, L. A., Ryan, C. M. E., Bryant, C. M. L. & Millar, L. (2009) A comparative analysis of the categorization of multidimensional stimuli: II. Strategic information search in humans (Homo sapiens) but not in pigeons (Columba livia). Journal of Comparative Psychology 123(4):406–20. doi: 10.1037/a0016851.Google Scholar
Maes, E., De Filippo, G., Inkster, A. B., Lea, S. E. G., De Houwer, J., D'Hooge, R., Beckers, T. & Wills, A. J. (2015) Feature- versus rule-based generalization in rats, pigeons and humans. Animal Cognition 18(6):1267–84. doi: 10.1007/s10071-015-0895-8.CrossRefGoogle ScholarPubMed
Meier, C., Lea, S. E. G. & McLaren, I. P. L. (2016) A stimulus-location effect in contingency-governed, but not rule-based, discrimination learning. Journal of Experimental Psychology: Animal Learning and Cognition 42(2):177–86. doi: 10.1037/xan0000098.Google Scholar
Seligman, M. E. (1970) On the generality of the laws of learning. Psychological Review 77(5):406–18. doi: 10.1037/h0029790.Google Scholar
Shaw, R. C., Boogert, N. J., Clayton, N. S. & Burns, K. C. (2015) Wild psychometrics: Evidence for “general” cognitive performance in wild New Zealand robins, Petroica longipes. Animal Behaviour 109:101–11. doi: 10.1016/j.anbehav.2015.08.001.Google Scholar
Smith, J. D., Ashby, F. G., Berg, M. E., Murphy, M. S., Spiering, B., Cook, R. G. & Grace, R. C. (2011) Pigeons' categorization may be exclusively nonanalytic. Psychonomic Bulletin & Review 18(2):414–21. doi: 10.3758/s13423-010-0047-8.Google Scholar
Smith, J. D., Berg, M. E., Cook, R. G., Murphy, M. S., Crossley, M. J., Boomer, J., Spiering, B., Beran, M. J., Church, B. A., Ashby, F. G. & Grace, R. C. (2012) Implicit and explicit categorization: A tale of four species. Neuroscience and Biobehavioral Reviews 36(10):2355–69. doi: 10.1016/j.neubiorev.2012.09.003.Google Scholar
Wills, A. J., Lea, S. E. G., Leaver, L. A, Osthaus, B., Ryan, C. M. E., Suret, M. B., Bryant, C. M. L., Chapman, S. J. A. & Millar, L. (2009) A comparative analysis of the categorization of multidimensional stimuli: I. Unidimensional classification does not necessarily imply analytic processing; evidence from pigeons (Columba livia), squirrels (Sciurus carolinensis), and humans (Homo sapiens). Journal of Comparative Psychology 123(4):391405. doi: 10.1037/a0016216.CrossRefGoogle Scholar