No CrossRef data available.
Article contents
Codes, functions, and causes: A critique of Brette's conceptual analysis of coding
Published online by Cambridge University Press: 28 November 2019
Abstract
Brette argues that coding as a concept is inappropriate for explanations of neurocognitive phenomena. Here, we argue that Brette's conceptual analysis mischaracterizes the structure of causal claims in coding and other forms of analysis-by-decomposition. We argue that analyses of this form are permissible and conceptually coherent and offer essential tools for building and developing models of neurocognitive systems like the brain.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2019
References
Dennett, D. C. (1981) Brainstorms: Philosophical essays on mind and psychology: MIT Press.CrossRefGoogle Scholar
Funahashi, K.-i. & Nakamura, Y. (1993). Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks 6(6):801–06.CrossRefGoogle Scholar
Geman, S., & Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(6):721–41. doi:10.1109/TPAMI.1984.4767596.CrossRefGoogle ScholarPubMed
Graves, A. (2013) Generating sequences with recurrent neural networks. arXiv:1308.0850 [cs.NE].Google Scholar
Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Ali Eslami, S. M., Riedmiller, M. J. & Silver, D. (2017) Emergence of locomotion behaviours in rich environments. arXiv:1707.02286 [cs.AI].Google Scholar
Levine, S., Finn, C., Darrell, T. & Abbeel, P. (2016) End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research 17(1):1334–73.Google Scholar
Lycan, W. G. (1981) Form, function, and feel. The Journal of Philosophy 78(1):24–50.CrossRefGoogle Scholar
Oppenheim, A. V. & Schafer, R. W. (2013) Discrete-time signal processing (3rd edition). Pearson.Google Scholar
Rice, C. (2015) Moving beyond causes: Optimality models and scientific explanation. Noûs 49(3):589–615.CrossRefGoogle Scholar
Roth, S. & Black, M. J. (2005) Fields of experts: A framework for learning image priors. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 2:860–7. IEEE.Google Scholar
Santoro, A., Hill, F., Barrett, D., Raposo, D., Botvinick, M. & Lillicrap, T. (2019) Is coding a relevant metaphor for building AI? arXiv:1904.10396 [q-bio.NC].Google Scholar
Schäfer, A. M. & Zimmermann, H. G. (2007) Recurrent neural networks are universal approximators. In: Artificial Neural Networks – ICANN 2006, ed. Kollias, S. D., Stafylopatis, A., Duch, W. & Oja, E.. Lecture Notes in Computer Science, 4131.Google Scholar
Shannon, C. E. & Weaver, W. (1963) The mathematical theory of communication. University of Illinois Press.Google Scholar
Srivastava, N., Mansimov, E. & Salakhutdinov, R. (2015) Unsupervised learning of video representations using LSTMs. Proceedings of Machine Learning Research 37:843–52.Google Scholar
van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. & Kavukcuoglu, K. J. S. (2016) WaveNet: A generative model for raw audio. arXiv:1609.03499n[cs.SD].Google Scholar
van den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. (2016) Pixel recurrent neural networks. Proceedings of Machine Learning Research 48:1727–36.Google Scholar
Walsh, D. M. & Ariew, A. (1996) A taxonomy of functions. Canadian Journal of Philosophy 26(4):493–514.CrossRefGoogle Scholar
Target article
Is coding a relevant metaphor for the brain?
Related commentaries (27)
A clash of Umwelts: Anthropomorphism in behavioral neuroscience
A sensorimotor alternative to coding is possible
Abandoning the code metaphor is compatible with semiotic process
Beyond metaphors and semantics: A framework for causal inference in neuroscience
Beyond Neural Coding? Lessons from Perceptual Control Theory
Codes are for messages, not for neurons
Codes, communication and cognition
Codes, functions, and causes: A critique of Brette's conceptual analysis of coding
Encodingism is not just a bad metaphor
Extrinsic and intrinsic representations
From mental representations to neural codes: A multilevel approach
From the “coding metaphor” to a theory of representation
Generative models as parsimonious descriptions of sensorimotor loops
How can we play together? Temporal inconsistencies in neural coding of music
Is coding a relevant metaphor for building AI?
Is information theory, or the assumptions that surround it, holding back neuroscience?
Is “the brain” a helpful metaphor for neuroscience?
Modest and immodest neural codes: Can there be modest codes?
Neural code: Another breach in the wall?
Neural codes – Necessary but not sufficient for understanding brain function
Not just a bad metaphor, but a little piece of a big bad metaphor
Our understanding of neural codes rests on Shannon's foundations
Plasticity of the neural coding metaphor: An unnoticed rhetoric in scientific discourse
Prediction, embodiment, and representation
Quantifying the role of neurons for behavior is a mediation question
The Bayesian brain: What is it and do humans have it?
The origin of the coding metaphor in neuroscience
Author response
Neural coding: The bureaucratic model of the brain