Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:27:16.833Z Has data issue: false hasContentIssue false

Why psychologists should embrace rather than abandon DNNs

Published online by Cambridge University Press:  06 December 2023

Galit Yovel
Affiliation:
School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel [email protected]; https://people.socsci.tau.ac.il/mu/galityovel/ [email protected] Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
Naphtali Abudarham
Affiliation:
School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel [email protected]; https://people.socsci.tau.ac.il/mu/galityovel/ [email protected]

Abstract

Deep neural networks (DNNs) are powerful computational models, which generate complex, high-level representations that were missing in previous models of human cognition. By studying these high-level representations, psychologists can now gain new insights into the nature and origin of human high-level vision, which was not possible with traditional handcrafted models. Abandoning DNNs would be a huge oversight for psychological sciences.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abudarham, N., Grosbard, I., & Yovel, G. (2021). Face recognition depends on specialized mechanisms tuned to view-invariant facial features: Insights from deep neural networks optimized for face or object recognition. Cognitive Science, 45(9), e13031. https://doi.org/10.1111/cogsCrossRefGoogle ScholarPubMed
Biederman, I., & Kalocsai, P. (1997). Neurocomputational bases of object and face recognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1358), 12031219. https://doi.org/10.1098/rstb.1997.0103CrossRefGoogle ScholarPubMed
Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018). VGGFace2: A dataset for recognising faces across pose and age. In Proceedings of the 13th IEEE international conference on automatic face and gesture recognition, FG 2018 (pp. 67–74). https://doi.org/10.1109/FG.2018.00020CrossRefGoogle Scholar
Cashon, C. H., & Holt, N. A. (2015). Developmental origins of the face inversion effect. In Advances in child development and behavior (1st ed., Vol. 48, pp. 117–150). Elsevier. https://doi.org/10.1016/bs.acdb.2014.11.008Google Scholar
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database (pp. 248–255). https://doi.org/10.1109/cvprw.2009.5206848CrossRefGoogle Scholar
Dobs, K., Martinez, J., Yuhan, K., & Kanwisher, N. (2022). Behavioral signatures of face perception emerge in deep neural networks optimized for face recognition. Proceedings of the National Academy of Sciences, 120(32), e2220642120.CrossRefGoogle Scholar
Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628634. https://doi.org/10.1037/0096-1523.21.3.628Google ScholarPubMed
Fausey, C. M., Jayaraman, S., & Smith, L. B. (2016). From faces to hands: Changing visual input in the first two years. Cognition, 152, 101107. https://doi.org/10.1016/j.cognition.2016.03.005CrossRefGoogle ScholarPubMed
Hill, M. Q., Parde, C. J., Castillo, C. D., Colón, Y. I., Ranjan, R., Chen, J.-C., … O'Toole, A. J. (2019). Deep convolutional neural networks in the face of caricature. Nature Machine Intelligence, 1(11), 522529. https://doi.org/10.1038/s42256-019-0111-7CrossRefGoogle Scholar
Jacob, G., Pramod, R. T., Katti, H., & Arun, S. P. (2021). Qualitative similarities and differences in visual object representations between brains and deep networks. Nature Communications, 12(1), 114. https://doi.org/10.1038/s41467-021-22078-3CrossRefGoogle ScholarPubMed
Kanwisher, N., Gupta, P., & Dobs, K. (2023). CNNs reveal the computational implausibility of the expertise hypothesis. iScience, 26(2), 105976. https://doi.org/10.1016/j.isci.2023.105976CrossRefGoogle ScholarPubMed
Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Computational Biology, 10(11), e1003915.Google Scholar
Ma, W. J., & Peters, B. (2020). A neural network walks into a lab: Towards using deep nets as models for human behavior (pp. 1–39).Google Scholar
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419457. https://doi.org/10.1037/0033-295X.102.3.419CrossRefGoogle ScholarPubMed
O'Toole, A. J., & Castillo, C. D. (2021). Face recognition by humans and machines: Three fundamental advances from deep learning. Annual Review of Vision Science, 7, 543570. https://doi.org/10.1146/annurev-vision-093019-111701CrossRefGoogle ScholarPubMed
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., … Sutskever, I. (2021). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 87488763). PMLR.Google Scholar
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386408.CrossRefGoogle ScholarPubMed
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533536.CrossRefGoogle Scholar
Shoham, A., Grosbard, I., Patashnik, O., Cohen-Or, D., & Yovel, G. (2022). Deep learning algorithms reveal a new visual-semantic representation of familiar faces in human perception and memory. Biorxiv, 2022-10.Google Scholar
Smith, L. B., & Slone, L. K. (2017). A developmental approach to machine learning? Frontiers in Psychology, 8, 110. https://doi.org/10.3389/fpsyg.2017.02124CrossRefGoogle ScholarPubMed
Tian, F., Xie, H., Song, Y., Hu, S., & Liu, J. (2022). The face inversion effect in deep convolutional neural networks. Frontiers in Computational Neuroscience, 16, 18. https://doi.org/10.3389/fncom.2022.854218CrossRefGoogle ScholarPubMed
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 7186. https://doi.org/10.1162/jocn.1991.3.1.71CrossRefGoogle ScholarPubMed
Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A., Diamond, S., Held, R., & Sinha, P. (2018). Potential downside of high initial visual acuity. Proceedings of the National Academy of Sciences of the United States of America, 115(44), 1133311338. https://doi.org/10.1073/pnas.1800901115CrossRefGoogle ScholarPubMed
Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356365. https://doi.org/10.1038/nn.4244CrossRefGoogle ScholarPubMed
Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141.CrossRefGoogle Scholar
Yovel, G., Grosbard, I., & Abudarham, N. (2023). Deep learning models challenge the prevailing assumption that face-like effects for objects of expertise support domain-general mechanisms. Proceedings of the Royal Society B, 290(1998), 20230093.CrossRefGoogle ScholarPubMed