Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T21:27:21.978Z Has data issue: false hasContentIssue false

The scientific value of explanation and prediction

Published online by Cambridge University Press:  06 December 2023

Hause Lin*
Affiliation:
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] https://www.hauselin.com Hill and Levene Schools of Business, University of Regina, Regina, SK, Canada

Abstract

Deep neural network models have revived long-standing debates on the value of explanation versus prediction for advancing science. Bowers et al.'s critique will not make these models go away, but it is likely to prompt new work that seeks to reconcile explanatory and predictive models, which could change how we determine what constitutes valuable scientific knowledge.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199231. https://doi.org/10.1214/ss/1009213726CrossRefGoogle Scholar
Eisenberg, I. W., Bissett, P. G., Zeynep Enkavi, A., Li, J., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Uncovering the structure of self-regulation through data-driven ontology discovery. Nature Communications, 10(1), 113. https://doi.org/10.1038/s41467-019-10301-1CrossRefGoogle ScholarPubMed
Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135175. https://doi.org/10.1086/286983CrossRefGoogle Scholar
Hofman, J. M., Watts, D. J., Athey, S., Garip, F., Griffiths, T. L., Kleinberg, J., … Yarkoni, T. (2021). Integrating explanation and prediction in computational social science. Nature, 595(7866), 181188. https://doi.org/10.1038/s41586-021-03659-0CrossRefGoogle ScholarPubMed
Lin, H., Werner, K. M., & Inzlicht, M. (2021). Promises and perils of experimentation: The mutual-internal-validity problem. Perspectives on Psychological Science, 16(4), 854863. https://doi.org/10.1177/1745691620974773CrossRefGoogle ScholarPubMed
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 11001122. https://doi.org/10.1177/1745691617693393CrossRefGoogle ScholarPubMed