No CrossRef data available.
Article contents
Neogenomic events challenge current models of heritability, neuronal plasticity dynamics, and machine learning
Published online by Cambridge University Press: 24 October 2012
Abstract
We address current needs for neogenomics-based theoretical and computational approaches for several neuroscience research fields, from investigations of heritability properties, passing by investigations of spatiotemporal dynamics in the neuromodulatory microcircuits involved in perceptual learning and attentional shifts, to the application of genetic algorithms to create robots exhibiting ongoing emergence.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2012
References
Allen, N. D. (2008) Temporal and epigenetic regulation of neurodevelopmental plasticity. Philosophical Transactions of the Royal Society B
363:23–38. doi: 10.1098/rstb.2006.2010.Google Scholar
Ashwin, P., Karabacak, O. & Nowotny, T. (2011) Criteria for robustness of heteroclinic cycles in neural microcircuits. Journal of Mathematical Neuroscience
1:13. doi:10.1186/2190-8567-1-13.Google Scholar
Baylor, D. A. & Fuortes, M. G. F. (1970) Electrical responses of single cones in the retina of the turtle. Journal of Physiology
297:77–92.CrossRefGoogle Scholar
Day, J. J. & Sweatt, J. D. (2011) Epigenetic mechanisms in cognition. Neuron
70(5):813–29. doi: 10.1016/j.neuron.2011.05.019.Google Scholar
Feng, J., Fouse, S. & Fan, G. (2007) Epigenetic regulation of neural gene expression and neuronal function. Pediatric Research
61(5):58–63. doi: 0031-3998/07/6105-0058R.Google Scholar
Goard, M. & Dan, Y. (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience
12(11):1444–49. doi:10.1038/nn.2402.Google Scholar
Grossberg, S. (1988) Nonlinear neural networks: Principles, mechanisms and architectures. Neural Networks
1:17–61. doi:10.1016/0893-6080(88)90021-4.CrossRefGoogle Scholar
Hawkey, D. J. C., Amitay, S. & Moore, D. R. (2004) Early and rapid perceptual learning. Nature Neuroscience
7(10):1055–56. doi:10.1038/nn1315.CrossRefGoogle ScholarPubMed
Heeger, D. J. (1992) Normalization of cell responses in cat striate cortex. Visual Neuroscience
9:181–97. doi: 10.1017/S0952523800009640.Google Scholar
Jong, H. D. (2002) Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology
9(1):67–103. doi:10.1089/10665270252833208.CrossRefGoogle ScholarPubMed
Koenig-Robert, R. & VanRullen, R. (2011) Spatiotemporal mapping of visual attention. Journal of Vision
11(14):12, 1–16. doi: 10.1167/11.14.12.Google Scholar
Lewkowicz, D. J. (2000) The development of intersensory temporal perception: An epigenetic systems/limitations view. Psychological Bulletin
126(2):281–308. doi: 10.1037//0033-2909.126.2.281.Google Scholar
Lo, C. C. & Wang, X. J. (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience
9:956–63. doi:10.1038/nn1722.Google Scholar
Markman, T. M., Quittner, A. L., Eisenberg, L. S., Tobey, E. A., Thal, D., Niparko, J. K. & Wang, N. Y. (2011) Language development after cochlear implantation: An epigenetic model. Journal of Neurodevelopmental Disorders
3:388–404. doi: 10.1007/s11689-011-9098-z.Google Scholar
Naka, K. I. & Rushton, W. A. (1966) S-potentials from luminosity units in the retina of fish (Cyprinidae). Journal of Physiology
185:587–99.CrossRefGoogle ScholarPubMed
Priebe, N. J. & Ferster, D. (2008) Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron
57:482–97. doi: 10.1016/j.neuron.2008.02.005.Google Scholar
Prince, C. G., Helder, N. A. & Hollich, G. J. (2005) Ongoing emergence: A core concept in epigenetic robotics. In: Proceedings of the 5th International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, ed. Berthouze, L., Kaplan, F., Kozima, H., Yano, H., Konczak, J., Metta, G., Nadel, J., Sandini, G., Stojanov, G. & Balkenius, C.. Lund University Cognitive Studies, Vol. 123, pp. 63–70. Nara, Japan.Google Scholar
Sagi, D. (2010) Perceptual learning in vision research. Vision Research
51:1552–66. doi: 10.1016/j.visres.2010.10.019.Google Scholar
Stanford, T. R., Shankar, S., Massoglia, D. P., Costello, M. G. & Salinas, E. (2010) Perceptual decision making in less than 30 milliseconds. Nature Neuroscience
13:379–85. doi:10.1038/nn.2485.Google Scholar
Wang, X. J. (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron
36:955–68. doi: 10.1016/S0896-6273(02)01092-9.Google Scholar
Zlatev, J. & Balkenius, C. (2001) Introduction: Why epigenetic robotics. Proceedings of the 1st International Workshop on Epigenetic Robotics
85:1–4. Lund University Cognitive Studies.Google Scholar
Target article
Behavior genetics and postgenomics
Related commentaries (24)
A call for an expanded synthesis of developmental and evolutionary paradigms
A developmental science commentary on Charney's “Behavior genetics and postgenomics”
A straw man's neogenome
Affirmation of a developmental systems approach to genetics
Assumptions in studies of heritability and genotype–phenotype association
Biology trumps statistics in the postgenomic era
Clinicians learn less and less about more and more until they know nothing about everything; researchers learn more and more about less and less until they know everything about nothing: Discuss
Epigenetic regulation of brain-derived neurotrophic factor: Implications in neurodevelopment and behavior
Estimating the actual subject-specific genetic correlations in behavior genetics
From gene activity to behavior (and back again)
Gene-independent heritability of behavioural traits: Don't we also need to rethink the “environment”?
Genetic sensitivity to the environment, across lifetime
Heritability estimates in behavior genetics: Wasn't that station passed long ago?
Is behavioral genetics ‘too-big-to-know’ science?
Is genomics bad for you?
Neogenomic events challenge current models of heritability, neuronal plasticity dynamics, and machine learning
Non-Mendelian etiologic factors in neuropsychiatric illness: Pleiotropy, epigenetics, and convergence
Parental brain and socioeconomic epigenetic effects in human development
Postgenomics and genetic essentialism
Preventing a paradigm shift: A plea for the computational genome
Relational developmental systems: A paradigm for developmental science in the postgenomic era
The fate of heritability in the postgenomic era
The history of the nature/nurture issue
Twin and family studies are actually more important than ever
Author response
Humans, fruit flies, and automatons