Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T05:06:31.987Z Has data issue: false hasContentIssue false

Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1

Published online by Cambridge University Press:  29 August 2014

Dieter Denneberg*
Affiliation:
Bremen, FRG
*
FB Mathematik/Informatik, Universität Bremen, D-2800 Bremen 33.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Average absolute (instead of quadratic) deviation from median (instead of expectation) is better suited to determine the safety loading for insurance premiums than standard deviation: The corresponding premium functionals behave additive under the practically relevant risk sharing schemes between first insurer and reinsurer.

Type
Articles
Copyright
Copyright © International Actuarial Association 1990

Footnotes

1

Lecture, given under the title “Quantilsabhängige Prämienprinzipien” at 21. Tagung der ASTIN-Gruppe in der DGVM, October 13th, 1989, Stuttgart.

References

Czuber, E. (1903, 3. Aufl. 1913, 1. Band) Wahrscheinlichkeitsrechnung und ihre Anwendung auf Fehlerausgleichung, Statistik und Lebensversicherung. Teubner, Leipzig und Berlin.Google Scholar
Denneberg, D. (1985) Valuation of First Moment Risk for Decision Purposes in Finance and Insurance. In Göppl, H., Henn, R. (Hrg.) 3. Tagung Geld, Banken und Versicherungen, Karlsruhe 12.-15.12.1984. Karlsruhe (Verlag Versicherungswirtschaft), 855869.Google Scholar
Denneberg, D. (1988a) Keynes Decision Rule, on ‘Expectation’ in the General Theory. European Journal of Political Economy 4, 205223.CrossRefGoogle Scholar
Denneberg, D. (1988b) Risiko und Erwartung in der Allgemeinen Theory, eine Formalisierung. In Hagemann, H., Steiger, O. (ed.'s) Keynes' General Theory nach fünfzig Jahren. Berlin: Duncker & Humblot.Google Scholar
Denneberg, D. (1989) Verzerrte Wahrscheinlichkeiten in der Versicherungsmathematik, quantilsab-hängige Prämienprinzipien. Mathematik-Arbeitspapiere Nr. 34 Preprint, FB Mathematik/Informatik, Universität Bremen.Google Scholar
Denneberg, D. (1990) Distorted Probabilities and Insurance Premiums (Extended Abstract of Denneberg 1989). In Proceedings of 14. SOR, Ulm Sept. 6-8, 1989. Frankfurt (Athenäum).Google Scholar
Gerber, H. U. (1979) An Introduction to Mathematical Risk Theory. S.S. Huebner Foundation Monograph Series No. 8. Homewodd/III (Irwin).Google Scholar
Schmeidler, D. (1986) Integral Representation without Additivity. Proceedings of the American Mathematical Society 97, 255261.CrossRefGoogle Scholar
Wakker, Peter P. (1989) Additive Representations of Preferences, a New Foundation of Decision Analysis. Theory and Decision Library Series C. Dordrecht (Kluwer).CrossRefGoogle Scholar
Yaari, M.E. (1987) The Dual Theory of Choice under Risk. Econometrica 55, 95115.CrossRefGoogle Scholar
Zagier, D. (1983) Inequalities for the Gini Coefficient of composite populations. Journal of Mathematical Economics 12, 103118.CrossRefGoogle Scholar