Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T09:18:47.388Z Has data issue: false hasContentIssue false

On Stop-Loss Order and the Distortion Pricing Principle

Published online by Cambridge University Press:  29 August 2014

Werner Hürlimann*
Affiliation:
Winterthur
*
Mathematik KB L, “Winterthur”, Paulstr. 9, CH-8401 Winterthur, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A number of more or less well-known, but quite complex, characterizations of stop-loss order are reviewed and proved in an elementary way. Two recent proofs of the stop-loss order preserving property for the distortion pricing principle are invalidated through a simple counterexample. A new proof is presented. It is based on the important Hardy-Littlewood transform, which is known to characterize the stop-loss order by reduction to the usual stochastic order, and the dangerousness characterization of stop-loss order under a finite crossing condition. Finally, we complete and summarize the main properties of the distortion pricing principle.

Type
Articles
Copyright
Copyright © International Actuarial Association 1998

References

REFERENCES

Blackwell, D. (1953). Equivalent comparisons of experiments. Annals of Mathematical Statistics 24, 265272.CrossRefGoogle Scholar
Blackwell, D. and Dubins, L.E. (1963). A converse to the dominated convergence theorem. Illinois Journal of Mathematics 7, 508514.CrossRefGoogle Scholar
Bühlmann, H. (1970). Mathematical Methods in Risk Theory. Springer-Verlag.Google Scholar
Bühlmann, H. (1980). An economic premium principle. ASTIN Bulletin 11, 5260.CrossRefGoogle Scholar
Bühlmann, H. (1984). The general economic premium principle. ASTIN Bulletin 14, 1321.CrossRefGoogle Scholar
Bühlmann, H., Gagliardi, B., Gerber, H.U. and Straub, E. (1977). Some inequalities for stop-loss premiums. ASTIN Bulletin 9, 7583.CrossRefGoogle Scholar
Chateauneuf, A., Kast, R. and Lapied, A. (1996). Choquet pricing for financial markets with frictions. Mathematical Finance 6(3), 323–30.CrossRefGoogle Scholar
Denneberg, D. (1985). Valuation of first moment risk for decision purposes in Finance and Insurance. In: Goppel, H., Henn, R. (ed.) 3. Tagung Geld, Banken und Versicherungen, Karlsruhe, 855869. Verlag Versicherungswirtschaft, Karlsruhe.Google Scholar
Denneberg, D. (1990). Premium calculation: why standard deviation should be replaced by absolute deviation. ASTIN Bulletin 20, 181190.CrossRefGoogle Scholar
Denneberg, D. (1994). Non-Additive Measure and Integral. Theory and Decision Library, Series B, vol. 27. Kluwer Academic Publishers.CrossRefGoogle Scholar
Dhaene, J., Wang, S., Young, V. and Goovaerts, M.J. (1997). Comonotonicity and maximal stop-loss premiums. Submitted.Google Scholar
Dubins, L.E. and Gilat, D. (1978). On the distribution of the maxima of martingales. Transactions of the American Mathematical Society 68, 337–38.Google Scholar
Elton, J. and Hill, T.P. (1992). Fusions of a probability distribution. The Annals of Probability 20(1), 421–54.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, Th. (1997). Modelling Extremal Events for Insurance and Finance. Applications of Mathematics – Stochastic Modelling and Applied Probability, vol. 33.Google Scholar
Hardy, G.H. and Littlewood, J.E. (1930). A maximal theorem with function-theoretic applications. Acta Mathematica 54, 81116.CrossRefGoogle Scholar
Heerwaarden, van A.E. (1991). Ordering of risks: theory and actuarial applications. Ph.D. Thesis, Tinbergen Research Series no. 20, Amsterdam.Google Scholar
Heerwaarden, van A.E. and Kaas, R. (1992). The Dutch premium principle. Insurance: Mathematics and Economics 11, 129133.Google Scholar
Heilmann, W.-R. (1987). Grundbegriffe der Risikotheorie. Verlag Versicherungswirtschaft, Karlsruhe. (English translation (1988). Fundamentals of Risk Theory)Google Scholar
Hürlimann, W. (1993). Optimal stop-loss limits under non-expected utility preferences. In Operations Research '92, 550552. Physica-Verlag.Google Scholar
Hürlimann, W. (1994). A note on experience rating, reinsurance and premium principles. Insurance: Mathematics and Economics 14, 197204.Google Scholar
Hürlimann, W. (1995a). Links between premium principles and reinsurance. International Congress of Actuaries, Brussels, vol. 2, 141167.Google Scholar
Hürlimann, W. (1995b). Transforming, ordering and rating risks. Bulletin of the Swiss Association of Actuaries, 213236.Google Scholar
Hürlimann, W. (1997). On quasi-mean value principles. Blätter der Deutschen Gesellschaft für Versicherungsmathematik XXIII, Heft 1, 116.Google Scholar
Hürlimann, W. (1998a). Truncation transforms, stochastic orders and layer pricing. 26-th International Congress of Actuaries, June 1998, Birmingham.Google Scholar
Hürlimann, W. (1998b). On distribution-free safe layer-additive pricing. Appears in Insurance: Mathematics and Economics.CrossRefGoogle Scholar
Kaas, R. and van Heerwaarden, A.E. (1992). Stop-loss order, unequal means, and more dangerous distributions. Insurance: Mathematics and Economics 11, 7177.Google Scholar
Kaas, R., Heerwarden, van A.E. and Goovaerts, M.J. (1994). Ordering of Actuarial Risks. CAIRE Education Series 1, Brussels.Google Scholar
Karlin, S. and Novikoff, A. (1963). Generalized convex inequalities. Pacific Journal of Mathematics 13, 12511279.CrossRefGoogle Scholar
Kertz, R.P. and Rösler, U. (1990). Martingales with given maxima and terminal distributions. Israel Journal of Mathematics 69, 173192.CrossRefGoogle Scholar
Kertz, R.P. and Rösler, U. (1992). Stochastic and convex orders and lattices of probability measures, with a martingale interpretation. Israel Journal of Mathematics 77, 129164.CrossRefGoogle Scholar
Lemaire, J. (1988). Actuarial challenges of reinsurance. Proceedings of the 23-th International Congress of Actuaries, Helsinki.Google Scholar
Meilijson, I. and Nàdas, A. (1979). Convex majorization with an application to the length of critical paths. Journal of Applied Probability 16, 671–77.CrossRefGoogle Scholar
Müller, A. (1996). Ordering of risks: a comparative study via loss-stop transforms. Insurance: Mathematics and Economics 17, 215222.Google Scholar
Ohlin, J. (1969). On a class of measures of dispersion with application to optimal reinsurance. ASTIN Bulletin 5, 249–66.CrossRefGoogle Scholar
Rüschendorf, L. (1991). On conditional stochastic ordering of distributions. Advances in Applied Probability 23, 4663.CrossRefGoogle Scholar
Shaked, M., Shanthikumar, J.G. (1994). Stochastic orders and their applications. Academic Press, New York.Google Scholar
Stoyan, D. (1977). Qualitative Eigenschaften und Abschatzungen Stochastischer Modelle. Akademie-Verlag, Berlin. (English version (1983). Comparison Methods for Queues and Other Stochastic Models. J. Wiley, New York.)CrossRefGoogle Scholar
Szekli, R. (1995). Stochastic Ordering and Dependence in Applied Probability. Lecture Notes in Statistics 97. Springer-Verlag.CrossRefGoogle Scholar
Taylor, J.M. (1983). Comparisons of certain distribution functions. Math. Operationsforschung und Statistik, Ser. Stat. 14(3), 397408.Google Scholar
van der Vecht, D.P. (1986). Inequalities for stopped Brownian motion. C.W.I. Tracts 21, Mathematisch Centrum, Amsterdam.Google Scholar
Wang, S. (1995a). Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insurance: Mathematics and Economics 17, 4354.Google Scholar
Wang, S. (1995b). Insurance pricing and increased limits ratemaking by proportional hazards transforms. Proc. XXV. Int. Congress of Actuaries Brussels, vol. 2, 293323.Google Scholar
Wang, S. (1995c). Riks loads on life/non-life insurance: a unified approach. XXVI. ASTIN Colloquium, Leuven.Google Scholar
Wang, S. (1996a). Premium calculation by transforming the layer premium density. ASTIN Bulletin 26, 7192.CrossRefGoogle Scholar
Wang, S. (1996b). Ordering of risks under PH-transforms. Insurance: Mathematics and Economics 18, 109114.Google Scholar
Wang, S., Young, V.R. and Panjer, H.H. (1997). Axiomatic characterization of insurance prices. Insurance: Mathematics and Economics 21, 173183.Google Scholar