Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T22:56:05.293Z Has data issue: false hasContentIssue false

A new approach for assessing cold-water coral growth insitu using fluorescent calcein staining

Published online by Cambridge University Press:  28 November 2012

Franck Lartaud*
Affiliation:
CNRS-UPMC UMR 8222, Laboratoire d’Ecogéochimie des Environnements benthiques, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France; Université Pierre et Marie Curie - Paris 6, Paris, France
Simon Pareige
Affiliation:
CNRS-UPMC UMR 8222, Laboratoire d’Ecogéochimie des Environnements benthiques, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France; Université Pierre et Marie Curie - Paris 6, Paris, France
Marc de Rafelis
Affiliation:
CNRS-UPMC UMR 7193, Laboratoire Biominéralisations et Environnements sédimentaires, Institut des Sciences de la Terre, Université Pierre et Marie Curie - Paris 6, Paris, France
Lionel Feuillassier
Affiliation:
CNRS-UPMC UMR 8222, Laboratoire d’Ecogéochimie des Environnements benthiques, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France; Université Pierre et Marie Curie - Paris 6, Paris, France
Marjorie Bideau
Affiliation:
CNRS-UPMC UMR 8222, Laboratoire d’Ecogéochimie des Environnements benthiques, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France; Université Pierre et Marie Curie - Paris 6, Paris, France
Erwan Peru
Affiliation:
CNRS-UPMC UMR 8222, Laboratoire d’Ecogéochimie des Environnements benthiques, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France; Université Pierre et Marie Curie - Paris 6, Paris, France
Pascal Romans
Affiliation:
CNRS-UPMC UMS 2348, Observatoire Océanologique de Banyuls, Université Pierre et Marie Curie - Paris 6, France
Frédéric Alcala
Affiliation:
COMEX SA, Marseille, France
Nadine Le Bris
Affiliation:
CNRS-UPMC UMR 8222, Laboratoire d’Ecogéochimie des Environnements benthiques, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France; Université Pierre et Marie Curie - Paris 6, Paris, France
*
a Corresponding author:[email protected]
Get access

Abstract

Research on the biology and ecology of cold-water corals (CWCs) is still in its infancy.The growth patterns of CWCs in their natural environments are poorly known. Growth rateinvestigations on these deep-sea reef builder species are needed to predict recovery timesfollowing damage to their ecosystems. This study investigates a new approach for analysingCWC growth rate, suitable for in situ application. Lopheliapertusa and Madrepora oculata (Scleractinian) were collectedfrom the Lacaze-Duthiers canyon in the northwestern Mediterranean Sea (520 m depth),marked and then either redeployed in situ for 6 months, or maintained inaquaria for growth rate comparison at a constant temperature of 13 °C, corresponding totheir habitat conditions. Two different types of staining (calcein and manganese) andthree different exposure times (30, 60 and 240 min) were tested. The results show thatcalcein offers rapid incorporation and easy detection, making it particularly suitable forskeletal growth rate investigations compared with other chemical staining. In situlinear polyp growth rates of 7.5 ± 1.2 mm y-1 and 3.5 ± 2.1 mmy-1 were measured in new polyps of L. pertusa and M.oculata, respectively. Those values were significantly higher in young polypsthan in older ones, where they decreased to 1.3 ± 1.5 mm y-1 and 1.2 ± 1.2 mmy-1. Beyond the study of coral reef growth processes, this approach offers amethodological basis for habitat quality assessment which could be used in the managementof deep-sea marine protected areas (MPA).

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Adkins, J.F., Henderson, G.M., Wang, J.L., O'Shea, S., Mokaden, F., 2004, Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet. Sci. Lett. 227, 481490. CrossRefGoogle Scholar
Allemand, D., Ferrier-Pagès, C., Furla, P., Houlbrèque, F., Puverel, S., Reynaud, S., Tambutté, E., Tambutté, S., Zoccola, D., 2004, Biomineralisation in reef-building corals : from molecular mechanisms to environmental control. C.R. Palevol 3, 453467. CrossRefGoogle Scholar
Andrews, A.H., Cordes, E., Mahoney, M.M., Munk, K., Coale, K.H., Cailliet, G.M., Heifetz, J., 2002, Age and growth and radiometric age validation of a deep-sea, jabitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101110. CrossRefGoogle Scholar
Barbin, V., Ramseyer, K., Elfman, M., 2008, Biological record of added manganese in seawater : a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas. Int. J. Earth Sci. 97, 193199. CrossRefGoogle Scholar
Bell, N., Smith, J., 1999, Coral growing on North Sea oil rigs. Nature 402, 601. CrossRefGoogle Scholar
Brooke, A., Young, C.M., 2009, In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153161. CrossRefGoogle Scholar
Cairns, S.D., Parker, S.A., 1992, Phylogenetic implications of calcium carbonate mineralogy in the Stylasteriae (Cnidaria, Hydrozoa). Palaios 7, 96107. CrossRefGoogle Scholar
Cheng, H., Adkins, J.F., Edwards, R.L., Boyle, E.A., 2000, U-Th dating of deep-sea corals. Geochim. Cosmochim. Acta 64, 24012416. CrossRefGoogle Scholar
Clark, M.R., Tittensor, D.P., 2010, An index to assess the risk to stony corals from bottom trawling on seamounts. Mar. Ecol. 31, 200211. CrossRefGoogle Scholar
Cohen, A.L., Smith, S.R., McCartney, M.S., van Etten, J., 2004, How brain corals record climate : an integration of skeletal structure, growth and chemistry of Diploporia labyrinthiformis from Bermuda. Mar. Ecol. Prog. Ser. 271, 147158. CrossRefGoogle Scholar
Company, J.B., Puig, P., Sarda, F., Palanques, A., Latasa, M., Scharek, R., 2008, Climate influence on deep sea populations. PLoS ONE 3, e1431. CrossRefGoogle ScholarPubMed
Costello M., McCrea M., Freiwald A., Lundälv T., Jonsson L., Bett B.J., van Weering T.C.E., de Haas H., Roberts J.M., Allen D., Eds. 2005, Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. Berlin, Springer-Verlag.
Dustan, P., 1975, Growth and form in the reef-building coral Montastrea annularis. Mar. Biol. 33, 101107. CrossRefGoogle Scholar
Form, A.U., Riebesell, U., 2012, Acclimatation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Change Biol. 18, 843853. CrossRefGoogle Scholar
Fossa, J.H., Mortensen, P.B., Furevik, D.M., 2002, The deep-water coral Lophelia pertusa in Norwegian waters : distribution and fishery impacts. Hydrobiologia 471, 12. CrossRefGoogle Scholar
Fourt M., Goujard A., Bonhomme D., 2012, Traitement des données acquises dans le cadre de la campagne “MEDSEACAN” (têtes des canyons méditerranéens continentaux). Phase 2 - Boîte 1. Partenariat Agence des aires marines protégées - GIS Posidonie, GIS Posidonie publ., Marseille, 26.
Freiwald A., Fossa J.H., Grehan A., Koslow T., Roberts J.M., 2004, Cold-water coral reefs : out of sight - no longer out of mind. UNEP-WCMC, Cambridge.
Fujikura, K., Okoshi, K., Naganuma, T., 2003, Strontium as a marker for estimation of microscopic growth rates in a bivalve. Mar. Ecol. Prog. Ser. 257, 295301. CrossRefGoogle Scholar
Gass, S.E., Roberts, J.M., 2006, The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea : colony growth, recruitment and environmental controls on distribution. Mar. Pollut. Bull. 52, 549559. CrossRefGoogle ScholarPubMed
Gass, S.E., Roberts, J.M., 2011, Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea. J. Mar. Biol. Assoc. UK 91, 831835. CrossRefGoogle Scholar
Guinotte, J.M., Orr, J., Cairns, S.D., 2006, Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers Ecol. Environ. 4, 141146. CrossRefGoogle Scholar
Hall-Spencer, J., Allain, J., Fossa, J.H., 2002, Trawling damage to Northeast Atlantic ancient coral reefs. Proc. R. Soc. Lond. B Biol. Sci. 269, 507511. CrossRefGoogle ScholarPubMed
Heussner, S., Durrieu de Madron, X., Calafat, A., Canals, M., Carbonne, J., Delsaut, N., Saragoni, G., 2006, Spatial and temporal variability of downward particle fluxes on a continental slope : Lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Mar. Geol. 234, 6392. CrossRefGoogle Scholar
Kaehler, S., McQuaid, I.R., 1999, Use of the fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna. Mar. Biol. 133, 455460. CrossRefGoogle Scholar
Lartaud, F., Langlet, D., de Rafelis, M., Emmanuel, L., Renard, M., 2006, Description of seasonal rythmicity in fossil osyter shells Crassostrea aginensis Tournouer, 1914 (Aquitanian) and Ostrea bellovacina Lamarck, 1806 (Thanetian). Cathodoluminescence and sclerochronological approaches. Geobios 39, 845852. Google Scholar
Lartaud, F., Emmanuel, L., de Rafelis, M., Ropert, M., Labourdette, N., Richardson, C.A., Renard, M., 2010a, A latitudinal gradient of seasonal temperature variation recorded in oyster shells from the coastal waters of France and The Netherlands. Facies 56, 1325. CrossRefGoogle Scholar
Lartaud, F., Chauvaud, L., Richard, J., Toulot, A., Bollinger, C., Testut, L., Paulet, Y.M., 2010b, Experimental growth pattern calibration of Antarctic scallop shells (Adamussium colbecki Smith, 1902) to provide a biogenic archive of high-resolution records of environmental and climatic changes. J. Exp. Mar. Biol. Ecol. 393, 158167. CrossRefGoogle Scholar
Lartaud, F., de Rafelis, M., Ropert, M., Emmanuel, L., Geairon, P., Renard, M., 2010c, Mn labelling of living oysters : artificial and natural cathodoluminescence analysis as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300, 206217. CrossRefGoogle Scholar
Mahe, K., Bellamy, E., Lartaud, F., de Rafelis, M., 2010, Calcein and manganese experiments for marking the shell of the common cockle (Cerastoderma edule) : tidal rhythm validation of increments formation. Aquat. Living Resour. 23, 239245. CrossRefGoogle Scholar
Maier, C., Hegeman, J., Weinbauer, M.G., Gattuso, J.P., 2009, Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosci. Discuss. 6, 18751901. CrossRefGoogle Scholar
Maier, C., Watremez, P., Taviani, M., Weinbauer, M.G., Gattuso, J.P., 2012, Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. Lond. B Biol. Sci. 279, 17131723. CrossRefGoogle ScholarPubMed
Mikkelsen, N., Erlenkeuser, H., Killingley, J.S., Berger, W.H., 1982, Norwegian corals : radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11, 163171. CrossRefGoogle Scholar
Mortensen, P.B., Rapp, H.T., 1998, Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia) : implications for determining of linear extension rates. Sarsia 83, 433446. CrossRefGoogle Scholar
Mortensen, P.B., 2001, Aquarium observations on the deep-water coral Lophelia pertusa (L., 1958) (scleractinia) and selected associated invertebrates. Ophelia 54, 83104. CrossRefGoogle Scholar
Orejas, C., Gori, A., Gili, J.M., 2008, Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean sea maintained in aquaria. Coral Reefs 27, 255. CrossRefGoogle Scholar
Orejas, C., Ferrier-Pagès, C., Reynaud, S., Gori, A., Beraud, E., Tsounis, G., Allemand, D., Gili, J.M., 2011, Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar. Ecol. Prog. Ser. 429, 5765. CrossRefGoogle Scholar
Petit G., Laubier L., 1962, Les canyons de la côte catalane, aperçu de nos connaissances et programmes de recherches. Océanographie géologique et géophysique de la Méditerranée occidentale. Coll. Natl. CNRS, pp. 89–93.
Pons-Branchu, E., Hillaire-Marcel, C., Deschamps, P., Ghaleb, B., Sinclar, D., 2005, Early diagenesis impact on precise U-series dating of deep-sea corals : example of a 100–200 year old Lophelia pertusa sample from the northeast Atlantic. Geochim. Cosmochim. Acta 69, 48654879. CrossRefGoogle Scholar
Purser, A., Bergmann, M., Lundälv, T., Ontrup, J., Nattkemper, T.W., 2009, Use of machine-learning algorithms for the automated detection of cold-water coral habitats : a pilot study. Mar. Ecol. Prog. Ser. 397, 241251. CrossRefGoogle Scholar
Purser, A., Larsson, A.I., Thompsen, L., van Oevelen, D., 2010, The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J. Exp. Mar. Biol. Ecol. 395, 5562. CrossRefGoogle Scholar
Reyss, D., 1964, Contribution à l’étude du rech Lacaze-Duthiers vallée sous-marine des côtes du Roussillon. Vie Milieu 15, 146. Google Scholar
Reyss D., Soyer J., 1965, Etude de deux vallées sous-marines de la mer Catalane (compte rendu de plongées en soucoupe plongeante SP 300). Bull. Inst. Océanogr. Monaco 65.
Roberts, J.M., Wheeler, A.J., Freiwald, A., 2006, Reefs of the deep : the biology and geology of cold-water coral ecosystems. Science 312, 543547. CrossRefGoogle ScholarPubMed
Roberts J.M., Wheeler A., Freiwald A., Cairns S., 2009, Cold-water corals : the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge.
Sabatier, P., Reyss, J.L., Hall-Spencer, J., Colin, C., Frank, N., Tisnérat-Laborde, N., Bordier, L., Douville, E., 2012, 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9, 12531265. CrossRefGoogle Scholar
Sanchez-Vidal, A., Canals, M., Calafat, A.M., Lastras, G., Pedrosa-Pamies, R., Menendez, M., Medina, R., Company, J.B., Hereu, B., Romero, J., Alcoverro, T., 2012, Impacts on the deep-sea ecosystem by a severe coastal storm. PLoS ONE 7, e30395-11. CrossRefGoogle ScholarPubMed
Soffker, A., Sloman, K.A., Hall-Spencer, J.M., 2011, In situ observations of fish associated with coral reefs off Ireland. Deep-Sea Res. Part I, 818825. CrossRefGoogle Scholar
Thiem, O., Ravagnan, E., Fossa, J.H., Berntsen, J., 2006, Food supply mechanisms for cold-water corals along a continental shelf edge. J. Mar. Syst. 60, 207219. CrossRefGoogle Scholar
White M., Bashmachnikov I., Aristegui J., Martins A., 2007, Physical processes and seamount productivity. In Pitcher T.J., Morato T., Hart P.B.J. (Eds.), Seamounts : ecology, fisheries and conservation. Oxford, Blackwell Publishing, pp. 65–84.