Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T06:17:42.148Z Has data issue: false hasContentIssue false

How many meals a day to minimize cannibalism when rearinglarvae of the Amazonian catfish Pseudoplatystoma punctifer? Thecannibal’s point of view

Published online by Cambridge University Press:  03 November 2011

Etienne Baras*
Affiliation:
IRD, UMR 226, ISE-M, BP 5095, 34196 Montpellier Cedex 05, France
Dustin V. Silva del Aguila
Affiliation:
IIAP-AQUAREC, Av. Abelardo Quiñones Km 7.5, Iquitos, Perú
Grace V. Montalvan Naranjos
Affiliation:
IIAP-AQUAREC, Av. Abelardo Quiñones Km 7.5, Iquitos, Perú UNFV-FOPCA, 350 Calle Roma, Miraflores, Lima, Perú
Rémi Dugué
Affiliation:
IRD, UMR 226, ISE-M, BP 5095, 34196 Montpellier Cedex 05, France LMI EDIA (Evolution et Domestication de l’Ichtyofaune amazonienne), Iquitos, Perú
Fred Chu Koo
Affiliation:
IIAP-AQUAREC, Av. Abelardo Quiñones Km 7.5, Iquitos, Perú LMI EDIA (Evolution et Domestication de l’Ichtyofaune amazonienne), Iquitos, Perú
Fabrice Duponchelle
Affiliation:
IRD, UMR 226, ISE-M, BP 5095, 34196 Montpellier Cedex 05, France UNFV-FOPCA, 350 Calle Roma, Miraflores, Lima, Perú LMI EDIA (Evolution et Domestication de l’Ichtyofaune amazonienne), Iquitos, Perú
Jean-François Renno
Affiliation:
IRD, UMR 226, ISE-M, BP 5095, 34196 Montpellier Cedex 05, France IIAP-AQUAREC, Av. Abelardo Quiñones Km 7.5, Iquitos, Perú LMI EDIA (Evolution et Domestication de l’Ichtyofaune amazonienne), Iquitos, Perú
Carmen Garcia-Dávila
Affiliation:
IIAP-AQUAREC, Av. Abelardo Quiñones Km 7.5, Iquitos, Perú LMI EDIA (Evolution et Domestication de l’Ichtyofaune amazonienne), Iquitos, Perú
Jesus Nuñez
Affiliation:
IRD, UMR 226, ISE-M, BP 5095, 34196 Montpellier Cedex 05, France UNFV-FOPCA, 350 Calle Roma, Miraflores, Lima, Perú LMI EDIA (Evolution et Domestication de l’Ichtyofaune amazonienne), Iquitos, Perú
*
a Corresponding author :[email protected]
Get access

Abstract

Meal frequency is a key parameter in fish larviculture, especially in highlycannibalistic species. Knowledge of the biological bases of cannibalism (growth capacityof cannibals, morphological constraints on cannibalism, prey size preference) can helppredicting the risks of cannibalism for different feeding schedules under cultureconditions. This study relied on the day-by-day analysis of prey size preference andbioenergetics of individual cannibals of the catfish Pseudoplatystoma punctifer(8–65 mm standard length, SL, 0.5–400 mg dry mass,DM) at 28.5 °C under 12L:12D. The results were equated with theontogenetic variations of morphological factors (head and mouth width) and feed efficiencyof larvae feeding on Artemia nauplii, in order to calculate the risks ofcannibalism among fish fed 2–7 daily meals. The predation capacities of P.punctifer were highest at 8 mm SL and decreased in larger fish(largest prey  =  86% and 70% SL in fish of 8 and  >30 mmSL, respectively). Cannibals of increasing size preferred increasinglysmaller prey relative to their own size, but also to their predation capacities. Thesemorphological and behavioural constraints were largely compensated for by bioenergeticsperformance. Cannibals consumed high daily food rations (as high as 171 and 29%DM in fish  <1 and  >300 mg DM,respectively), exhibited high gross conversion efficiencies (0.50–0.55 and about 0.70, infish  <1 and  >30 mg DM, respectively), and grew rapidly(90 and 18% DM day-1 in fish  <1 and  >300 mgDM, respectively). The growth advantage of cannibals over siblings fedArtemia nauplii was decisive, except for high meal frequencies (6–7daily meals). This study supports the view that the risk of cannibalism and adequatefeeding strategies can be largely predicted in a particular fish species if themorphological, behavioural and bioenergetics bases of cannibalism are examined altogetherin an ontogenetic perspective.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Adams S.M., Breck J.E., 1990, Bioenergetics. In: Schreck C.B., Moyle P.B. (Eds.), Methods for Fish Biology, Bethesda, Maryland, American Fisheries Society, pp. 389–415.
Aguilera, C., Mendoza, R., Rodriguez, G., Marquez, G., 2002, Morphological description of alligator gar and tropical gar larvae with an emphasis on growth indicators. Trans. Am. Fish. Soc. 131, 899909. 2.0.CO;2>CrossRefGoogle Scholar
AOAC International, 1995, Official Methods of Analysis of AOAC International. Arlington, Va, USA, AOAC International.
Arslan, M., Rinchard, J., Dabrowski, K., Portella, M.C., 2008, Effects of different dietary lipid sources on the survival, growth, and fatty acid composition of South American catfish, Pseudoplatystoma fasciatum, surubim, juveniles. J. World. Aquac. Soc. 39, 5161. CrossRefGoogle Scholar
Baras, E., 1998, Bases biologiques du cannibalisme chez les poissons. Cah. Ethol. 18, 5398. Google Scholar
Baras, E., 1999, Sibling cannibalism among juvenile vundu under controlled conditions: I. Cannibalistic behaviour, prey selection and prey size selectivity. J. Fish Biol. 54, 82105. CrossRefGoogle Scholar
Baras, E., Hafsaridewi, R., Slembrouck, J., Priyadi, A., Moreau, Y., Pouyaud, L., Legendre, M., 2010a, Why is cannibalism so rare among cultured larvae and juveniles of Pangasius djambal ? Morphological, behavioural and energetic answers. Aquaculture 305, 4251. CrossRefGoogle Scholar
Baras, E., Jobling, M., 2002, Dynamics of intracohort cannibalism in cultured fish. Aquac. Res. 33, 461479. CrossRefGoogle Scholar
Baras, E., Lucas, M.C., 2010, Individual growth trajectories of sibling Brycon moorei raised in isolation since egg stage, and their relationship with aggressive behaviour. J. Fish Biol. 77, 985997. CrossRefGoogle Scholar
Baras E., Montalvan Naranjos G.V., Silva del Aguila D.V., Chu Koo F., Dugué R., Chavez C., Duponchelle F., Renno J.F., Legendre M., Nuñez J., 2011, Ontogenetic variation of food intake and gut evacuation rate in larvae of the doncella Pseudoplatystoma punctifer, as measured with by a non-invasive observational method. Aquac. Res., in press, DOI: 10.1111/j.1365-2109.2011.02982.x.
Baras, E., Mpo’N’Tcha, A., Driouch, H., Prignon, Ch., Mélard, C., 2002, Ontogenetic variations of thermal optimum for growth, and its implication on thermolabile sex determination in blue tilapia. J. Fish Biol. 61, 645660. CrossRefGoogle Scholar
Baras, E., Raynaud, T., Slembrouck, J., Cochet, C., Caruso, D., Legendre, M., 2011, Interactions between temperature and size on growth, size heterogeneity, mortality and cannibalism in cultured larvae and juveniles of the Asian catfish, Pangasianodon hypophthalmus (Sauvage). Aquac. Res. 42, 260276. CrossRefGoogle Scholar
Baras, E., Slembrouck, J., Cochet, C., Caruso, D., Legendre, M., 2010b, Morphological factors behind the early mortality of cultured larvae in the catfish, Pangasianodon hypophthalmus. Aquaculture 298, 211219. CrossRefGoogle Scholar
Brabrand, A., 1995, Intracohort cannibalism among larval stages of perch (Perca fluviatilis). Ecol. Freshw. Fish 4, 7076. CrossRefGoogle Scholar
Bry, C., Basset, E., Rognon, X., Bonamy, F., 1992, Analysis of sibling cannibalism among pike, Esox lucius, juveniles reared under semi-natural conditions. Environ. Biol. Fishes 35, 7584. CrossRefGoogle Scholar
Buitrago-Suárez, U.A., Burr, B.M., 2007, Taxonomy of the catfish genus Pseudoplatystoma Bleeker (Siluriformes: Pimelodidae) with recognition of eight species. Zootaxa 1512, 138. Google Scholar
Conceição, L.E.C., Dersjant-Li, Y., Verreth, J.A.J., 1998, Cost of growth in larval and juvenile African catfish (Clarias gariepinus) in relation to growth rate, food intake and oxygen consumption. Aquaculture 161, 95106. CrossRefGoogle Scholar
Dabrowski, K., Arslan, M., Rinchard, J., Palacios, E.M., 2008, Growth, maturation, induced spawning, and production of the first generation of South American catfish, Pseudoplatystoma sp., in North America. J. World Aquac. Soc. 39, 174183. CrossRefGoogle Scholar
Echelle, A.A., Riggs, C.D., 1972, Aspects of the early life history of gars (Lepisosteus) in Lake Taxoma. Trans. Am. Fish. Soc. 101, 106112. 2.0.CO;2>CrossRefGoogle Scholar
Essington, T.E., Hodgson, J.R., Kitchell, J.F., 2000, Role of satiation in the functional response of a piscivore, largemouth bass (Micropterus salmoides). Can. J. Fish. Aquat. Sci. 57, 548556. CrossRefGoogle Scholar
Folkvord A., 1997, Ontogeny of cannibalism in larval and juvenile fishes with special emphasis on Atlantic cod. In: Chambers R.C., Trippel E.A. (Eds.), Early Life History and Recruitment in Fish Populations, London, Chapman and Hall, pp. 251–278.
Folkvord, A., Otterå, H., 1993, Effects of initial size distribution, day length, and feeding frequency on growth, survival and cannibalism in juvenile Atlantic cod (Gadus morhua L.). Aquaculture 114, 243260. CrossRefGoogle Scholar
Hecht, T., Appelbaum, S., 1988, Observations on intraspecific aggression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus (Clariidae: Pisces) under controlled conditions. J. Zool. (Lond.) 214, 2144. CrossRefGoogle Scholar
Hecht, T., Pienaar, A.G., 1993, A review of cannibalism and its implications in fish larviculture. J. World Aquac. Soc. 24, 246261. CrossRefGoogle Scholar
Houde, E.D., 1994, Differences between marine and freshwater larvae: implications for recruitment. ICES J. Mar. Sci. 51, 9197. CrossRefGoogle Scholar
Houde, E.D., Schekter, R.C., 1981, Growth rates, rations and cohort consumption of marine fish larvae in relation to prey concentrations. Rapp. P.V. Reun. ICES 178, 441453. Google Scholar
Houde, E.D., Zastrow, C.E., 1993, Ecosystem- and taxon-specific dynamic and energetics properties of larval fish assemblages. Bull. Mar. Sci. 53, 290335. Google Scholar
Hseu, J.-R., Chang, H.-F., Ting, Y.-Y., 2003, Morphometric prediction of cannibalism in larviculture of orange-spotted grouper, Ephinephelus coioides. Aquaculture 218, 203207. CrossRefGoogle Scholar
Hseu, J.-R., Hwang, P.P., Ting, Y.Y., 2004, Morphometric model and laboratory analysis on intracohort cannibalism in giant grouper Epinephelus lanceolatus fry. Fish. Sci. 70, 482486. CrossRefGoogle Scholar
Hseu J.-R., Huang, W.-B., Chu, Y.-T., 2007, What causes cannibalization-associated suffocation in cultured brown-marbled grouper, Epinephelus fuscoguttatus (Forsskål, 1775)? Aquac. Res. 38, 1056–1060.
Jobling M., 1994, Fish Bioenergetics, London, Chapman and Hall, 309 p.
Kamler E., 1992, Early Life History of Fish: an Energetics Approach, London, Chapman and Hall.
Katavic, I., Jug-Dujakovic, J., Glamuzina, B., 1989, Cannibalism as a factor affecting the survival of intensively cultured sea bass (Dicentrarchus labrax) fingerlings. Aquaculture 77, 135143. CrossRefGoogle Scholar
Keckeis, H., Kamler, E., Bauer-Nemeschkal, E., Schneeweiss, K., 2001, Survival, development, and food energy partitioning of nase larvae and early juveniles at different temperatures. J. Fish Biol. 59, 4561. CrossRefGoogle Scholar
Kestemont, P., Jourdan, S., Houbart, M., Mélard, C., Paspatis, M., Fontaine, P., Cuvier, A., Kentouri, M., Baras, E., 2003, Size heterogeneity, cannibalism and competition in cultured predatory fish larvae: biotic and abiotic influences. Aquaculture 227, 333356. CrossRefGoogle Scholar
Kossowski C., 1996, Perspectives de l’élevage des poissons-chats (Siluroidei) en Amérique du Sud. Aquat. Living Resour. 9 (special issue), 189–195.
Kubitza, W.F., Lovshin, L.L., 1999, Formulated diets, feeding strategies and cannibalism during intensive culture of juvenile carnivorous fishes. Rev. Fish. Sci. 7, 122. CrossRefGoogle Scholar
Legendre M., 1992, Potentialités aquacoles des Cichlidae (Sarotherodon melanotheron, Tilapia guineensis) et Clariidae (Heterobranchus longifilis) autochtones des lagunes ivoiriennes. Paris, ORSTOM, Travaux et Documents Microfichés (TDM) 89.
Legendre M., Pouyaud L., Slembrouck J., Gustiano R., Kristanto A.H., Subagja J., Komarudin O., Maskur, 2000, Pangasius djambal: a new candidate species for fish culture in Indonesia. Indones. Agric. Res. Dev. IARD J. 22, 1–14.
Lundvall, D., Svanbäck, R., Persson, L., Byström, P., 1999, Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can. J. Fish. Aquat. Sci. 56, 12851292. CrossRefGoogle Scholar
Nuñez, J., 2009, Domestication de nouvelles espèces d’intérêt piscicole en Amazonie. Cah. Agric. 18, 136143. Google Scholar
Nuñez, J., Dugué, R., Corcuy Arana, N., Duponchelle, F., Renno, J.F., Raynaud, T., Legendre, M., 2008, Induced breeding and larval rearing of Surubí, Pseudoplatystoma fasciatum (Linnaeus, 1766), from the Bolivian Amazon. Aquac. Res. 39, 764776. CrossRefGoogle Scholar
Nuñez, J., Castro, D., Fernández, C., Dugué, R., Chu-Koo, F., Duponchelle, F., Garcia, C., Renno, J.-F., 2011, Hatching rate and larval growth variations in Pseudoplatystoma punctifer: maternal and paternal effects. Aquac. Res. 42, 764775. CrossRefGoogle Scholar
Padilla Pérez, P.P., Alcántara Bocanegra, F., Ismiño Orbe, R., 2001, Reproducción inducida de la doncella Pseudoplatystoma fasciatum y desarrollo embrionario - larval. Fol. Amazon. 12, 141154. CrossRefGoogle Scholar
Paller, M.H., Lewis, W.M., 1987, Effects of diet on growth depensation and cannibalism among intensively cultured larval striped bass. Prog. Fish-Cult. 49, 270275. 2.0.CO;2>CrossRefGoogle Scholar
Parazo, M.M., Avila, E.M., Reyes, Jr. D.M., 1991, Size- and weight-dependent cannibalism in hatchery bred sea bass (Lates calcarifer Bloch). J. Appl. Ichthyol. 7, 17. CrossRefGoogle Scholar
Parra, G., Yúfera, M., 2001, Comparative energetics during early development of two marine fish species, Solea senegalensis (Kaup) and Sparus aurata (L.). J. Exp. Biol. 204, 21752183. Google Scholar
Pedersen, B.H., 1997, The cost of growth in young fish larvae, a review of new hypotheses. Aquaculture 155, 259269. CrossRefGoogle Scholar
Qin, J., Fast, A.W., 1996, Size and feed dependent cannibalism with juvenile snakehead Channa striatus. Aquaculture 144, 313320. CrossRefGoogle Scholar
Sawada Y., Okada T., Miyashita S., Murata O., Kumai H., 2005, Completion of the Pacific bluefin tuna Thunnus orientalis (Temminck & Schlegel) life cycle. Aquac. Res. 36, 413–421.
Shirota, A., 1970, Studies on the mouth size of fish larvae. Bull. Jap. Soc. Sci. Fish. 36, 353368 (In Japanese with English summary and figure captions). CrossRefGoogle Scholar
Smith, R.W., Houlihan, D.F., 1995, Protein synthesis and oxygen consumption in fish cells. J. Comp. Physiol. B165, 93101. CrossRefGoogle Scholar
Sogard, S.M., Olla, B.L., 1994, The potential for intracohort cannibalism in age-0 walleye pollock, Theragra chalcogramma, as determined under laboratory conditions. Environ. Biol. Fishes 39, 183190. CrossRefGoogle Scholar
Stephens D.W., Krebs J.R., 1986, Foraging theory. Princeton, NJ, USA, Princeton University Press.
Turesson, H., Brönmark, C., Wolf, A., 2006, Satiation effects in piscivore prey selection. Ecol. Freshw. Fish 15, 7885. CrossRefGoogle Scholar
van der Meer, M.B., Faber, R., Zamora, J.E., Verdegem, M.C.J., 1997, Effect of feeding level on feed losses and feed utilization of soya and fish meal diets in Colossoma macropomum (Cuvier). Aquac. Res. 28, 391403. CrossRefGoogle Scholar
Verreth, J., Den Bieman, H., 1987, Quantitative feed requirements of African catfish (Clarias gariepinus Burchell) larvae fed with decapsulated cysts of Artemia. I. The effect of temperature and feeding level. Aquaculture 63, 251267. Google Scholar
Wuenschel, M.J., Jugovich, A.R., Hare, J.A., 2004, Effect of temperature and salinity on the energetics of juvenile gray snapper (Lutjanus griseus): implications for nursery habitat value. J. Exp. Mar. Biol. Ecol. 312, 333347. CrossRefGoogle Scholar
Wuenschel, M.J., Werner, R.G., 2004, Consumption and gut evacuation rate of laboratory-reared spotted seatrout (Sciaenidae) larvae and juveniles. J. Fish Biol. 65, 723743. CrossRefGoogle Scholar
Ziliukiene, V., Ziliukas, V., 2006, Feeding of early larval pike Esox lucius L. reared in illuminated cages. Aquaculture 258, 378387. CrossRefGoogle Scholar