Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T19:05:37.277Z Has data issue: false hasContentIssue false

Effect of sampling location, release technique and time afteractivation on the movement characteristics of scallop (Pecten maximus)sperm

Published online by Cambridge University Press:  08 April 2013

Marc Suquet*
Affiliation:
Ifremer, UMR 6539, Physiologie fonctionnelle des organismes marins, Station expérimentale d’Argenton, Argenton, France
Claudie Quere
Affiliation:
Ifremer, UMR 6539, Physiologie fonctionnelle des organismes marins, Plouzané, France
Christian Mingant
Affiliation:
Ifremer, UMR 6539, Physiologie fonctionnelle des organismes marins, Station expérimentale d’Argenton, Argenton, France
Luc Lebrun
Affiliation:
Ifremer, UMR 6539, Physiologie fonctionnelle des organismes marins, Station expérimentale d’Argenton, Argenton, France
Dominique Ratiskol
Affiliation:
Ifremer, UMR 6539, Physiologie fonctionnelle des organismes marins, Station expérimentale d’Argenton, Argenton, France
Philippe Miner
Affiliation:
Ifremer, UMR 6539, Physiologie fonctionnelle des organismes marins, Plouzané, France
Jacky Cosson
Affiliation:
University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 38925 Vodnany, Czech Republic
*
a Corresponding author:[email protected]
Get access

Abstract

Sperm characteristics of scallops have not been well described in the scientificliterature. The effects of sperm release technique (thermal shock versus serotonininjection), of sperm collection technique (testis sampling versus serotonin injection), ofsperm sampling location along the genital tract, of in vitro sperm maturation, and of timepost activation on scallop sperm characteristics were assessed in the present work.Whatever sperm release technique used, no significant differences were observed regardingthe percentage of motile spermatozoa and the velocity of the average path (VAP). Comparedto testicular sperm, a higher percentage of motile spermatozoa, VAP and intracellularadenosine triphosphate (ATP) content were observed for sperm shed after serotonininjection. From the distal part of testes up to the gonopore, an increase of thepercentage of motile spermatozoa and VAP was assessed, suggesting a sperm ‘maturationprocess’ along the genital ducts. A higher increase in the percentage of motile sperm wasrecorded during a 5 min incubation of testicular sperm in seawater containing 2 mMserotonin and seawater containing 10 mM caffein compared to seawater (control). Inaddition, a higher VAP was assessed, incubating testicular sperm in caffein, compared tocontrol or serotonin. Then, the percentage of motile spermatozoa, VAP and intracellularATP content exhibited a progressive reduction during the 10 h swimming period. Mean valuesof the percentage of motile spermatozoa, VAP, sperm track linearity (LIN) andintracellular ATP content recorded at the beginning of the movement period for spermsamples collected after intragonadal serotonin injection, were 82 ± 7%,162 ± 15μm s-1, 0.33 ± 0.12 and 212 ± 133 nmol × 10-9 spermatozoa (n = 9 males), respectively. The presentstudy confirms the existence of a sperm “maturation process” along scallop genital ducts.In addition, the cessation of scallop sperm movement can be explained by the exhaustion ofATP content at the end of the movement phase.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, S., Christophersen, G., Magnesen, T., 2011, Spat production of the great scallop (Pecten maximus): a roller coaster. Can. J. Zool. 89, 579598. CrossRefGoogle Scholar
Au, D.W.T., Chaing, M.W.L., Wu, R.S.S., 2000, Effects of cadmium and phenol on motility and ultrastructure of sea urchin and mussel spermatozoa. Arch. Environ. Contam. Toxicol. 38, 455463. CrossRefGoogle ScholarPubMed
Cosson, J., 2010, Frenetic activation of fish spermatozoa flagella entails short term motility, portending their precocious decadence. J. Fish Biol. 76, 240279. CrossRefGoogle ScholarPubMed
Cosson J., Faure C., Devauchelle N., Suquet, M., 2008a, Activation of oyster (Crassostrea gigas) sperm motility. In: Physiomar 08. 1–4 September 2008, Brest, France. Book of abstracts, http://archimer.ifremer.fr/doc/2008/acte-4600.pdf
Cosson, J., Groison, A.L., Suquet, M., Fauvel, C., Dreanno, C., Billard, R., 2008b, Studying sperm motility in marine fish: an overview on the state of the art. J. Appl. Ichthyol. 24, 460486. CrossRefGoogle Scholar
Demoy-Schneider, M., Levêque, A., Schmitt, N., Le Pennec, M., Cosson, J., 2012, Motility activation and metabolism characteristics of the black-lip-pearl oyster Pinctada margaritifera var: cumingii (Jameson, 1901). Theriogenology 77, 5364. CrossRefGoogle Scholar
Devauchelle, N., Mingant, C., 1991, Review of the reproductive physiology of the scallop, Pecten maximus, applicable to intensive aquaculture. Aquat. Living Resour. 4, 4151. CrossRefGoogle Scholar
Devauchelle, N., Micarelli,, P., Guerrier,, P., Desilets,, J., 1994a, The neurohormonal induction of the release of oocytes and sperm from Pecten maximus. Can. Tech. Rep. Fish. Aquat. Sci. 1, 148158. Google Scholar
Devauchelle N., Faure C., Girard J.P., 1994b, The quality of sperm of two bivalves: the oyster, Crassostrea gigas and the scallop, Pecten maximus. In: Muir J., Sevila F (Eds.) Measures for success, Eur. Aquac. Soc., Spec. Publ. 21, 214–2166.
Dreanno C., 1998, Régulation de la mobilité des spermatozoïdes de turbot (Psetta maxima) et de bar (Dicentrarchus labrax). Ph.D. Thesis, Fac Vie-santé, Univ. Rennes.
Everett, E.M., Williams, P.J., Gibson, G., Stewart, D.T., 2004, Mitochondrial DNA polymorphisms and sperm motility in Mytilus edulis (Bivalvia: Mytilidae). J. Exp. Zool. 301A, 906910. CrossRefGoogle Scholar
FAO, 2010. Fisheries and aquaculture information and statistics service. Food and Agriculture Organization of the United Nations, FAO, Rome.
Faure C., 1996, Paramètres physiologiques de l’émission et de l’activation des gamètes mâles de deux mollusques bivalves, la coquille Saint Jacques Pecten maximus (L.) et l’huître creuse Crassostrea gigas (Thunberg). Ph.D. Thesis, Fac Diderot, Univ. Paris VII, Paris.
Faure, C., Devauchelle, N., Girard, J.P., 1994a, Ionic factors affecting motility, respiration and fertilization rate of the sperm of the bivalve Pecten maximus (L). J. Comp. Physiol. 164B, 444450. CrossRefGoogle Scholar
Faure, C., Devauchelle, N., Girard, J.P., Cosson, J., 1994b, The quality of Pecten maximus sperm. In: Proc. 9th Int. Pectinid Workshop, 22–27 April 1993, Nanaimo, Canada. Can. Tech. Rep. Fish. Aquat. Sci. 1, 2837. Google Scholar
Galstoff, P.S., 1940, Physiology of reproduction of Ostrea virginica. III. Stimulation of spawning in the male oyster. Biol. Bull. 78, 117135. Google Scholar
Gibbons, M.C., Castagna, M., 1984, Serotonin as an inducer of spawning in six bivalve species. Aquaculture 40, 189191. CrossRefGoogle Scholar
Jha, M., Côté, J., Hoeh, W.R., Blier, P.U., Stewart, D.T., 2007, Sperm motility in Mytilus edulis in relation to mitochondrial DNA polymorphisms: implications for the evolution of doubly uniparental inheritance in bivalves. Evolution 62, 99106. Google Scholar
Mita, M., Fujiwara, A., De Santis, R., Yasumasu, I., 1994, High energy phosphate compounds in spermatozoa of the sea urchin Arbacia lixula and Paracentrotus lividus. Comp. Biochem. Physiol. 109A, 269275. CrossRefGoogle Scholar
Morisawa, S., Morisawa, M. 1986, Acquisition of potential for sperm motility in rainbow trout and chum salmon. J. Exp. Biol. 126, 8996. Google ScholarPubMed
Ohta, H., Kawamoto, T., Isowa, K., Aoki, H., Hayashi, M., Narita, T., Komaru, A., 2007, Motility of spermatozoa obtained from testes of Japanese pearl oyster Pinctada fucata martensii. Fish. Sci. 73, 107111. CrossRefGoogle Scholar
Ohtake, T., Mita, M., Fujiwara, A., Tazawa, E., Yasumasu, I., 1996, Degeneration of respiratory system in sea urchin spermatozoa during incubation in seawater for long duration. Zool. Sci. 13, 857863. CrossRefGoogle Scholar
Paulet, Y.M., Donval, A., Bekhadra, F., 1993, Monoamines and reproduction in Pecten maximus, a preliminary approach. Invert. Reprod. Develop. 23, 8994. CrossRefGoogle Scholar
Suquet, M., Labbe, C., Brizard, R., Donval, A., Le Coz, J.R., Quere, C., Haffray, P., 2010, Changes in motility, ATP content, morphology and fertilization capacity during the movement phase of tetraploid Pacific oyster (Crassostrea gigas) sperm. Theriogenology 74, 111117. CrossRefGoogle ScholarPubMed
Suquet, M., Cosson, J., Donval, A., Labbé, C., Boulais, M., Haffray, P., Bernard, I., Fauvel, C., 2012, Marathon versus sprint racers: an adaptation of sperm characteristics to the reproductive strategy of Pacific oyster, turbot and seabass. J. Appl. Ichthyol. 28, 956960. CrossRefGoogle Scholar
Tash J.S., 1990, Role of cAMP, calcium, and protein phosphorylation in sperm motility, Boston, CRC Press.
Tournade, A., 1913, Différence de motilité des spermatozoïdes prélevés dans les différents segments de l’épididyme. C. R. Soc. Biol. 74, 738739. Google Scholar
Velasco, L.A., Barros, J., Acosta, E., 2007, Spawning induction and early development of the Caribbean scallops Argopecten nucleus and Nodipecten nodosus. Aquaculture 266, 153165. CrossRefGoogle Scholar
Welsh, J.H., Moorhead, M., 1960, The quantitative distribution of 5-hydroxytryptamine in the invertebrates, especially in their nervous system. J. Neurochim. 6, 146169. CrossRefGoogle Scholar
Wilson-Leedy, J.G., Ingermann, R.L., 2007, Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67, 661672. CrossRefGoogle ScholarPubMed