Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T11:31:31.909Z Has data issue: false hasContentIssue false

Diet and performance in the scallop, Argopecten purpuratus: force production during escape responses and mitochondrial oxidative capacities

Published online by Cambridge University Press:  14 June 2011

Helga Guderley*
Affiliation:
Département de biologie, Université Laval, Québec, P.Q. Canada G1K 7P4, Canada CEAZA (Centro de Estudios Avanzados en Zonas Áridas), Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
Katherina Brokordt
Affiliation:
CEAZA (Centro de Estudios Avanzados en Zonas Áridas), Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
Hernán M. Pérez Cortés
Affiliation:
Département de biologie, Université Laval, Québec, P.Q. Canada G1K 7P4, Canada CEAZA (Centro de Estudios Avanzados en Zonas Áridas), Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
Yanic Marty
Affiliation:
Laboratoire des Lipides marins, UMR CNRS 6521, Université de Bretagne occidentale, CS 93837, 29238 Brest Cedex 3, France
Edouard Kraffe
Affiliation:
Laboratoire des Lipides marins, UMR CNRS 6521, Université de Bretagne occidentale, CS 93837, 29238 Brest Cedex 3, France
*
aCorresponding author: [email protected]
Get access

Abstract

We examined whether escape response performance and mitochondrial capacities could reveal differences created by feeding scallops, Argopecten purpuratus, mono-specific algal diets composed of either Chaetoceros calcitrans or Isochrysis galbana (variety T. iso) hereafter T. iso. Before and after feeding scallops with these diets, we assessed force production in vivo to evaluate escape response performance (initial and repeat). We measured oxidative capacities of mitochondria isolated from the adductor muscle and from the male and female portions of the gonad. Initial escape response performance was reduced more by the C. calcitrans diet than by the T. iso diet. Repeat escape responses, which require aerobic recuperation, were reduced by both treatments. The oxidative capacity of mitochondria isolated from muscle and female gonad was markedly lower in scallops fed C. calcitrans than in those fed T. iso. Flux through complex I–IV and through complex IV was also lower in mitochondria from muscle of scallops fed C. calcitrans than in those fed T. iso. Muscle aerobic capacity, assessed by citrate synthase activity, was lower in scallops fed C. calcitrans than in those fed T. iso. Despite the marked differences in fatty acid (FA) composition of the algal diets, the FA composition of mitochondrial phospholipids differed little between scallops fed C. calcitrans and those fed T. iso. Both escape response behaviour and mitochondrial capacities changed with feeding mono-specific diets. The simplicity of measurements of scallop escape responses suggests this as a practical means of evaluating the status of scallops for the two monoalgal diets tested.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D.M., Peck, L.S., Bock, C., Pörtner, H.O., 2003, High-energy phosphate metabolism during exercise and recovery in temperate and Antarctic scallops: an in vivo P-31-NMR study. Physiol. Biochem. Zool. 76, 622633. CrossRefGoogle Scholar
Brokordt, K.B., Himmelman, J.H., Guderley, H., 2000a, Effect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776. J. Exp. Mar. Biol. Ecol. 251, 205225. CrossRefGoogle ScholarPubMed
Brokordt, K.B., Himmelman, J.H., Nusetti, O., Guderley, H., 2000b, Reproductive investment reduces recuperation from escape responses in the tropical scallop Euvola ziczac. Mar. Biol. 137, 857865. CrossRefGoogle Scholar
Brokordt, K.B., Fernandez, M., Gaymer, C., 2006, Domestication reduces the capacity to escape from predators. J. Exp. Mar. Biol. Ecol. 329, 1119. CrossRefGoogle Scholar
Brown, M.R., 1991, The amino acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 145, 7999. CrossRefGoogle Scholar
Brown, M.R., Miller, K.A., 1992, The ascorbic acid content of eleven species of microalgae used in mariculture. J. Appl. Physiol. 4, 205215. Google Scholar
Brown, M.R., Jeffrey, S.W., Volkman, J.K., Dunstan, G.A., 1997, Nutritional properties of microalgae for mariculture. Aquaculture 151, 315331. CrossRefGoogle Scholar
Brown M.R., 2002, Nutritional value of microalgae in aquaculture. In: Cruz-Suarez L.E., Ricque-Marie D., Tapia-Salazar M., Gaxiola-Cortes M.G., Simoes N. (Eds.), Avances en Nutricion acuicola VI. Memorias del VI symposium internacional de nutricion acuicola. 3–6 Sept. 2002 Cancun, Quintata Roo, México, pp. 281–292.
Chih, P.C., Ellington, W.S., 1986, Control of glycolysis during contractile activity in the phasic adductor muscle of the bay scallop, Argopecten irradians concentricus: identification of potential sites of regulation and a consideration of the control of octopine dehydrogenase activity. Physiol. Zool. 59, 563573. CrossRefGoogle Scholar
Chu, F.E., Webb, K.L., 1984, Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster, Crassostrea virginica. Lipids 19, 815820. CrossRefGoogle Scholar
Delaporte, M., Soudant, P., Moal, J., Lambert, C., Quéré, C., Miner, P., Choquet, G., Paillard, C., Samain, J.-F., 2003, Effect of a mono-specific algal diet on immune functions in two bivalve species – Crassostrea gigas and Ruditapes philippinarum. J. Exp. Biol. 206, 30533064. CrossRefGoogle Scholar
De Moreno, J.E.A., Moreno, V.J., Brenner, R.R., 1976, Lipid metabolism of the yellow clam, Mesodesma mactroides: 2-Polyunsaturated fatty acid metabolism. Lipids 11, 561566. CrossRefGoogle ScholarPubMed
Enright, C.T., Newkirk, G.F., Craigie, J.S., Castell, J.D., 1986, Evaluation of phytoplankton as diet for juvenile Ostrea edulis L. J. Exp. Mar. Biol. Ecol. 96, 113. CrossRefGoogle Scholar
Farias A., Uriate I., 2006, Nutrition in Pectinids. In: Shumway S., Parsons G.J. (Eds.), Scallops: Biology, Ecology and Aquaculture, Amsterdam, Elsevier, pp. 521–542.
Fleury, P.G., Janssoone, X., Nadeau, M., Guderley, H., 2005, Force production during escape responses: sequential recruitment of the phasic and tonic portions of the adductor muscle in juvenile sea scallop, Placopecten magellanicus (Gmelin). J. Shellfish Res. 24, 905911. Google Scholar
Fuller, S.J., Randle, P.J., 1984, Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal muscle mitochondria. Biochem. J. 219, 635646. CrossRefGoogle ScholarPubMed
Graham, M., 1987, The solubility of oxygen in physiological salines. Fish Physiol. Biochem. 4, 14. CrossRefGoogle ScholarPubMed
Guderley, H.E., Rojas, F.M., Nusetti, O.A., 1995, Metabolic specialization of mitochondria from scallop phasic muscles. Mar. Biol. 122, 409416. CrossRefGoogle Scholar
Guderley, H., Janssoone, X., Nadeau, M., Bourgeois, M., Pérez, H., 2008a, Force recordings during escape responses by Placopecten magellanicus (Gmelin): seasonal changes in the impact of handling stress. J. Exp. Mar. Biol. Ecol. 355, 8594. CrossRefGoogle Scholar
Guderley, H., Kraffe, E., Bureau, W., Bureau, D.P., 2008b, Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle. J. Comp. Physiol. B 178, 385399. CrossRefGoogle ScholarPubMed
Himmelman, J.H., Guderley, H.E., Duncan, P.F., 2009, Responses of the saucer scallop Amusium balloti to potential predators. J. Exp. Mar. Biol. Ecol. 378, 5861. CrossRefGoogle Scholar
Kraffe, E., Tremblay, R., Belvin, S., LeCoz, J.R., Marty, Y., Guderley, H., 2008, Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar. Biol. 156, 2538. CrossRefGoogle Scholar
Kraffe, E., Grall, J., Palacios, E., Guerra, C., Soudant, P., Marty, Y., 2010, Occurrence of the cis-4,7,10,trans-13-22:4 fatty acid in the family Pectinidae (Mollusca: Bivalvia). Lipids 45, 437444. CrossRefGoogle Scholar
Lafrance, M.L., Guderley, H., Cliche, G., 2002, Low temperature but not air exposure slows the recuperation of juvenile scallops, Placopecten magellanicus, from exhausting escape responses. J. Shellfish Res. 21, 605618. Google Scholar
Legault, C., Himmelman, J.H., 1993, Relation between escape behaviour of benthic marine invertebrates and the risk of predation. J. Exp. Mar. Biol. Ecol. 170, 5574. CrossRefGoogle Scholar
Lowry, H., Rosebough, N., Farr, A., Randall, R., 1951, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 263275. Google ScholarPubMed
Mackay, J., Shumway, S.E., 1980, Factors affecting oxygen consumption in the scallop Chlamys delicatula (Hutton). Ophelia 19, 1926. CrossRefGoogle Scholar
Martínez, G., Aguilera, C., Mettifago, L., 2000, Interactive effects of diet and temperature on reproductive conditioning of Argopecten purpuratus (Lamarck 1819) broodstock. Aquaculture 183, 149159. CrossRefGoogle Scholar
Marty, Y., Delaunay, F., Moal, J., Samain, J.F., 1992, Changes in the fatty acid composition of the scallop Pecten maximus (L.) during larval development. J. Exp. Mar. Biol. Ecol. 163, 221234. CrossRefGoogle Scholar
Muleme, H.M., Walpole, A.C., Staples, J.F., 2006, Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol. Biochem. Zool. 79, 474483. CrossRefGoogle ScholarPubMed
Pérez, H.M., Janssoone, X., Guderley, H., 2008, Tonic contractions allow metabolic recuperation of the adductor muscle during escape responses of giant scallop Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 360, 7884. CrossRefGoogle Scholar
Phillips, R., Ursell, T., Wiggins, P., Sens, P., 2009, Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379385. CrossRefGoogle Scholar
Pirini, M., Manuzzi, M.P., Pagliarani, A., Trombetti, F., Borgatti, A.R., Ventrella, V., 2007, Changes in fatty acid composition of Mytilus galloprovincialis (Lamarck) fed on microalgal and wheat germ diets. Comp. Biochem. Physiol. B 147, 616626. CrossRefGoogle Scholar
Soudant, P., Marty, M., Moal, J., Robert, R., Quéré, C., Le Coz, J.R., Samain, J.F., 1996, Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143, 361378. CrossRefGoogle Scholar
Soudant, P., Marty, Y., Moal, J., Masski, H., Samain, J.F., 1998, Fatty acid composition of polar lipid classes during the larval development of scallop Pecten maximus (L.). Comp. BIOCHEM. Physiol. 121A, 279288. CrossRefGoogle Scholar
Thompson, R.J., Livingstone, D.R., de Zwaan, A., 1980, Physiological and biochemical aspects of valve snap and valve closure responses in the giant scallop Placopecten magellanicus. I. Physiology. J. Comp. Physiol. 137, 97104. CrossRefGoogle Scholar
Tremblay, I., Guderley, H., Fréchette, M., 2006, Swimming performance, metabolic rates, and their correlates in the Iceland scallop Chlamys islandica. Physiol. Biochem. Zool. 79, 10461057. CrossRefGoogle ScholarPubMed
Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., Garland, C.D., 1989, Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219240. CrossRefGoogle Scholar
Webb K.L., Chu F.E.,1983, Phytoplankton as a food source for bivalve larvae. In: Pruder G.D., Langdon C.J., Conklin D.E. (Eds.), Proc. 2nd Internat. Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition, Louisiana State University, Baton Rouge, pp. 272–291.
Whyte, J.N.C., 1987, Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60, 231241. CrossRefGoogle Scholar
Wilkens, L.A., 1991, Neurobiology of the scallop (Pecten ziczac): 1.Starfish-mediated escape behaviors. Proc. R. Soc. London B 211, 341372. CrossRefGoogle Scholar
Zhang, M., Mileykovskaya, E., Dowhan, W., 2002, Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 277, 4355343556. Google Scholar