Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T18:36:06.488Z Has data issue: false hasContentIssue false

Characterisation of waste output from flow-through trout farms in France: comparison of nutrient mass-balance modelling and hydrological methods*

Published online by Cambridge University Press:  17 March 2011

Joël Aubin*
Affiliation:
INRA-Agrocampus-Ouest, UMR 1069 Sols, Agronomie et hydrosystème, Spatialisation (SAS), 35000 Rennes, France
Aurélien Tocqueville
Affiliation:
ITAVI, Institut technique de l’aviculture et pisciculture, 28 rue du Rocher, 75008 Paris, France
Sadasivam J. Kaushik
Affiliation:
INRA UMR 1067, NuMeA, Unité mixte de recherche “Nutrition Métabolismes et Aquaculture”, Pôle Hydrobiologie, 64310 Saint Pée sur Nivelle, France
*
a Corresponding author: [email protected]
Get access

Abstract

Water quality assessment is a key factor in the environmental management of freshwater networks, especially those including fish farms, which need cost-effective operational tools to monitor and control their waste output. In France, current legislation specifies limits in concentrations of dissolved compounds and suspended solids at fish-farm outlets. Despite the development of mass-balance modelling tools, chemical analysis of water (hydrological method) remains the most widely used method. To understand better the environmental impact of trout farms on aquatic ecosystems and to compare waste assessment methods, we monitored 20 commercial flow-through trout farms for 24 h, and we compared data obtained with the two methods (hydrological method and mass balance modelling) by linear regression. For total nitrogen and total phosphorus, the correlation between the two methods was high; thus, considering the uncertainty of both methods, this study was not able to determine which was more accurate. The high correlation between observed ammonia concentrations and predicted total nitrogen emissions provides a coefficient for estimating ammonia emissions at the farm level. The same approach is proposed for the evaluation of phosphate emissions. In conclusion, this study confirms the utility of simulation modelling for assessing nutrient release from fish farms.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Notice ! The figures of the article were modified on April 21, 2011.

References

Afnor, 2000, Norme AFNOR NF T90-354 : L’Indice biologique Diatomées
Afnor, 2003, Norme AFNOR NF T90-395 : L’Indice biologique Macrophytes en rivière
Afnor, 2004, Norme AFNOR NF T90-344 : L’Indice Poissons en rivière
Afnor, 2004, Norme AFNOR NF T90-350 : L’Indice biologique global normalisé.
Assemblée Nationale & Sénat, 2006, Loi n°2006-1772 du 30 décembre 2006 sur l’eau et les milieux aquatiques. NOR : DEVX0400302L. J.Off. Rép. Fr. n°303, 31 décembre 2006, texte n°3, 20285.
Aubin, J., Papatryphon, E., Van der Werf, H.M.G., Petit, J., Morvan, Y.M., 2006, Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using life cycle assessment. Aquaculture;61, 12591268. CrossRefGoogle Scholar
Axler, R.P., Tikkanen, C., Henneck, J., Schuldt, J., McDonald, E.M., 1997, Characteristics of effluent and sludge from two commercial rainbow trout farms in Minnesota. Progress. Fish-Cult., 59, 161172. 2.3.CO;2>CrossRefGoogle Scholar
Boujard T., Vallée F., Vachot C., 2002, Evaluation des rejets d’origine nutritionnelle par la méthode des bilans, comparaison avec les flux sortants. Proc. 4th workshop on fish nutrition INRA-IFREMER, 20 Sept. 2002, Bordeaux, pp. 24–27.
Bureau, D.P., Gunther, S., Cho, C.Y., 2002, Chemical composition and preliminary theoretical estimates of waste outputs of rainbow trout reared in commercial cage culture operations in Ontario. N. Am. J. Aquac. 5, 3338. Google Scholar
Bureau, D.P., Cho, C.Y., 1999, Phosphorus utilization by rainbow trout (Oncorhynchus mykiss): estimation of dissolved phosphorus waste output. Aquaculture 179, 127140. CrossRefGoogle Scholar
CEMAGREF, 1984, Salmoniculture et environnement. Vol. 1, Evaluation de la pollution rejetée par les salmonicultures intensives. Etudes 16, 71 p.
Cho, C.Y., Kaushik, S.J., 1990, Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). World Rev. Nutr. Dietetics;1, 132172. Google Scholar
Cho C.Y., Hynes J.D., Wood K.R., Yoshida H.K., 1991, Quantification of fish culture wastes by biological (nutritional) and chemical (limnological) methods: the development of high nutrient dense (HND) diets. In: Cowey C.B., Cho C.Y. (Eds) Nutritional strategies and aquaculture waste. Proc. 1st Int. Symp. Nutritional Strategies in Management of Aquaculture Waste, University of Guelph, Guelph , Ontario, pp. 37–49.
Cowey C.B., Cho C.Y., 1991, Nutritional strategies and aquaculture waste. Proc. 1st Int. Symp. Nutritional strategies in management of aquaculture waste. Univ. Guelph, Guelph, Ontario.
Cripps, S.J., 1995, Serial particle size fraction and characterisation of an aquacultural effluent. Aquaculture 133, 323339. CrossRefGoogle Scholar
Cripps, S.J., Bergheim, A., 2000, Solids management and removal for intensive land-based aquaculture production systems. Aquac. Eng. 22, 3356. CrossRefGoogle Scholar
European Community, 2000, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJL327, 22 Dec. 2000, pp. 1–73.
Hua, K., Bureau, D.P., 2006, Modelling digestible phosphorus content of salmonid fish feeds. Aquaculture 254, 455465. CrossRefGoogle Scholar
Hua, K., de Lange, C.F.M., Niimi, A.J., Cole, G., Moccia, R.D., Fan, M.Z., Bureau, D.P., 2008, A factorial model to predict phosphorus waste output of rainbow trout (Oncorhynchus mykiss). Aquac. Res. 39, 10591068. CrossRefGoogle Scholar
Jatteau P., 1999, Les apports trophiques : quantification des flux polluants. In: Petit J. (Ed.) Environnement et Aquaculture : aspects techniques et économiques (Tome 1), INRA Editions, Paris, pp. 74–92.
Kaushik, S.J., 1980, Influence of the nutritional status on the daily patterns of nitrogen excretion in carp (Cyprinus carpio L.) and rainbow trout (Salmo gairdneri R.). Reprod. Nutr. Develop. 20, 17511765. CrossRefGoogle Scholar
Kaushik S.J., Cowey C.B., 1991, Dietary factors affecting nitrogen excretion by fish. In: Cowey C.B., Cho (Eds.) Nutritional strategies and aquaculture waste. Proc.1st Int. Symp. Nutritional Strategies in Management of Aquaculture Waste, University of Guelph, Guelph , Ontario.
Kaushik, S.J., 1998, Nutritional bioenergetics and estimation of waste production in non salmonids. Aquat. Living Resour. 11, 211217. CrossRefGoogle Scholar
Lemarié, G., Martin, J.L., Dutto, G., Garidou, C., 1998, Nitrogenous and phosphorous waste production in a flow-through land-based farm of European seabass (Dicentrarchus labrax). Aquat. Living Resour. 11, 247254. CrossRefGoogle Scholar
Liao, P., 1970, Pollution potential of salmonids fish hatcheries, Water Sewage Works 117, 291297. Google Scholar
Liao, P., Mayo, R., 1974, Intensified fish culture combining water reconditioning with pollution abatement. Aquaculture 3, 6185. CrossRefGoogle Scholar
Maillard, V.M., Boardman, G.D., Nyland, J.E., Kuhn, D.D., 2005, Water quality and sludge characterization at raceway-system trout farms. Aquac. Eng. 33, 271284. CrossRefGoogle Scholar
MAAP (Ministère de l’Agriculture de l’Alimentation et de la Pêche), 2009, La salmoniculture française à l’étiage, Agreste Primeur 227, June 2009, Paris.
Millennium Ecosystem Assessment, 2005, Ecosystems and Human Well-being: Synthesis.
Island Press, Washington, DC, USA.
NF EN 1189, 1996, Qualité de l’eau, Dosage du phosphore, Dosage spectrométrique à l’aide du molybdate d’ammonium.
NF EN 872, 1996, Qualité de l’eau, Dosage des matières en suspension, méthode par filtration sur filtre en fibres de verre.
NF EN ISO 11905-1, 1997, Qualité de l’eau, Dosage de l’azote, Partie 1 : Méthode par minéralisation oxydante au peroxodisulfate.
NF EN ISO 11732, 1997, Détermination de l’azote ammoniacal par analyse en flux (CFA et FIA) et détection spectrométrique.
NF EN ISO 13395, 1996, Détermination de l’azote nitreux et de l’azote nitrique et de la somme des deux par analyse en flux (CFA et FIA) et détection spectrométrique.
NF EN ISO 748, 2009, Hydrométrie. Mesurage du débit des liquides dans les canaux découverts au moyen de moulinets ou de flotteurs.
Papatryphon, E., Petit, J., Van der Werf, H.M.G., Kaushik, S.J., Kanyarushoki, C., 2005, Nutrient balance modeling as a tool for environmental management in aquaculture: the case of trout farming in France. Environ. Manage. 5, 161174. CrossRefGoogle Scholar
Roque d’Orbcastel, E., Blancheton, J.P, Boujard, T., Aubin, J., Moutounet, Y., Przybyla, C., Belaud, A., 2008, Comparison of two methods for evaluating waste of a flow through trout farm. Aquaculture 274, 7279. CrossRefGoogle Scholar
Willoughby H., Larsen H., Bowen J., 1972, The pollution effect of fish hatcheries. American Fishes and US Trout News, Sept.-Oct. 1972, pp. 6–7 and 20–21.