Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T09:11:18.821Z Has data issue: false hasContentIssue false

Calcein and manganese experiments for marking the shell of thecommon cockle (Cerastoderma edule): tidal rhythm validation of incrementsformation

Published online by Cambridge University Press:  30 September 2010

Kélig Mahé*
Affiliation:
IFREMER, Centre Manche-mer du Nord, Sclerochronology Centre, Laboratoire Ressources halieutiques, 150 quai Gambetta, BP 699, 62321 Boulogne-sur-mer, France
Elise Bellamy
Affiliation:
IFREMER, Centre Manche-mer du Nord, Sclerochronology Centre, Laboratoire Ressources halieutiques, 150 quai Gambetta, BP 699, 62321 Boulogne-sur-mer, France IFREMER, Centre Manche-mer du Nord, Laboratoire Environnement côtier et Ressources aquacoles, 150 quai Gambetta, BP 699, 62321 Boulogne-sur-mer, France
Franck Lartaud
Affiliation:
UPMC Univ Paris 06, CNRS FRE 3350, Laboratoire d’Ecogéochimie des Environnements benthiques (LECOB), Observatoire océanologique, av. du Fontaulé, 66650 Banyuls-sur-mer, France
Marc de Rafélis
Affiliation:
UPMC Univ Paris 06, UMR 7193, iSTeP, Laboratoire Biominéralisations et Environnements sédimentaires, Case Postale 116, 4 place Jussieu, 75252 Paris Cedex 05, France
*
a Corresponding author:[email protected]
Get access

Abstract

This work focuses on investigating the potential of calcein and manganese as growthmarkers of the common cockle (Cerastoderma edule) in the bay of Somme(France). Recapture of shells, previously marked using a chemical marking and then bred innatural conditions, was performed in order to determine the shell growth patterns. Calceinmarking has shown a fluorescent increment in shells after only 30 min immersion time at150 mg L-1, but also for shells immersed 3 h at 50 mg L-1. Likewise,manganese shell marking was revealed under cathodoluminescence for shells immersed 1 h at120 mg L-1 as well as for shells which spent 4 h at 90 mg L-1. Anumerical analysis performed on each marked cockles has revealed 23 micro-incrementsbetween the mark and the ventral edge of the valves, corresponding to the 23 tides thatoccurred during the 12 days at liberty post marking. The periodicity of incrementformation is thus validated for a tidal frequency. The growth rates of C.edule, ranged from 11.67 to 19.94 μm d-1, decreasedsignificantly with increasing shell length. This preliminary study gives a clue to theunderstanding of cockle growth and could be used in shellfish production for cockle agemonitoring, but also for chemical analysis to learn more about biomineralization processof this species.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbin, V., Ramseyer, K., Elfman, M., 2008, Biological record of added manganese in seawater: a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas . Int. J. Earth Sci. 97, 193199. CrossRefGoogle Scholar
Bashey, F., 2004, A comparison of the suitability of alizarin red S and calcein for inducing a non-lethally detectable mark in juvenile guppies. Trans. Am. Fish. Soc. 133, 15161523. CrossRefGoogle Scholar
Clark, I.G.R., 1974, Growth lines in Invertebrates skeletons Ann. Rev. Earth Th. Pl. Sci. 2, 7799. CrossRefGoogle Scholar
Clarke, A., Prothero-Thomas, E., Beaumont, J.C., Chapman, A.L., Brey, T., 2004, Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol. 28, 6271. Google Scholar
Cole, H.A., 1956, A preliminary study of growth-rate in cockles (Cardium edule L.) in relation to commercial exploitation. J. Cons. Int. Explor. Mer 22, 7790. CrossRefGoogle Scholar
Day, R.W., Williams, M.C., Hawkes, G.P., 1995, A comparison of fluorochromes for marking abalone shells. Mar. Freshw. Res. 46, 599605. CrossRefGoogle Scholar
Ellers, O., Johnson, A.S., 2009, Polyfluorochrome marking slows growth only during the marking month in the green sea urchin Strongylocentrotus droebachiensis . Invertebr. Biol. 128, 126144. CrossRefGoogle Scholar
Evans, J.W., 1972, Tidal growth increments in the cockle Clinocardium nuttalli . Science 176, 416417. CrossRefGoogle ScholarPubMed
Fahy, E., Carroll, J., Murran, S., 2005, The Dundalk cockle Cerastoderma edule fishery in 2003-2004. Irish Fish. Invest. 14, 16. Google Scholar
Fujikura, K., Okoshi, K., Naganuma, T., 2003, Strontium as a marker for estimation of microscopic growth rates in a bivalve. Mar. Ecol. Prog. Ser. 257, 295301. CrossRefGoogle Scholar
Goodwin, D.H., Flessa, K.W., Schöne, B.R., Dettman, D.L., 2001, Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California Bivalve Mollusk Chione cortezi: Implications for paleoenvironmental analysis. Palaios 16, 387398. 2.0.CO;2>CrossRefGoogle Scholar
Hawkes, G.P., Day, R.W., Wallace, M.W., Nugent, K.W., Bettiol, A.A., Jamieson, D.N., Williams, M.C., 1996, Analyzing the growth and form of mollusc shell layers, in situ, by cathodoluminescence microscopy and Raman spectroscopy. J. Shellfish Res. 15, 659666. Google Scholar
Hermann M., 2008, Population dynamics of the Argentinean surf clams Donax hanleyanus and Mesodesma mactroides from open-Atlantic beaches off Argentina. Ph.D thesis, Univ. Bremen, Germany.
House, M.R., Farrow, G.E., 1968, Daily growth banding in the shell of the cockle, Cardium edule . Nature 219, 13841386. CrossRefGoogle ScholarPubMed
Kaehler, S., McQuaid, C.D., 1999, Use of the fluorochrome calcein as an in situ marker in the brown mussel Perna perna . Mar. Biol. 133, 455460. CrossRefGoogle Scholar
Kilada, R., Campana, S., Roddick, D., 2009, Growth and sexual maturity of the northern propellercalm, Cyrtodaria siliqua, in Eastern Canada with bomb radiocarbon age validation. Mar. Biol. 156, 10291037. CrossRefGoogle Scholar
Langlet, D., Alunno-Bruscia, M., De Rafelis, M., Renard, M., Roux, M., Schein, E., Buestel, D., 2006, Experimental and natural cathodoluminescence in the shell of Crassostrea gigas from Thau lagoon (France): ecological and environmental implications. Mar. Ecol. Prog. Ser. 317, 143156. CrossRefGoogle Scholar
Lartaud, F., De Rafelis, M., Ropert, M., Emmanuel, L., Geairon, P., Renard, M., 2010, Mn labelling of living oysters: artificial and natural cathodoluminescence analysis as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300, 206217. CrossRefGoogle Scholar
Lönne, O.J., Gray, J.S., 1988, Influence of tides on microgrowth bands in Cerastoderma edule from Norway. Mar. Ecol. Prog. Ser. 42, 17. CrossRefGoogle Scholar
Lucas, T., Palmer, P.J., Wang, S., Scoones, R., 2008, Marking the shell of the saucer scallop Amusium balloti for sea ranching using oxytetracycline, calcein and alizarin red S. J. Shellfish Res. 27, 11831188. CrossRefGoogle Scholar
McKinnon J.F., 1996, Studies of the age, growth and shell increment patterns in the New Zealand cockle (Austrovenus stutchburyi). Ph.D. thesis, Univ. Otago, New Zealand.
Monaghan, J.P., 1993, Comparison of calcein and tetracycline as chemical markers in summer flounder. Trans. Am. Fish. Soc. 122, 298301. 2.3.CO;2>CrossRefGoogle Scholar
Moran, A.L., 2000, Calcein as a marker in experimental studies newly-hatched gastropods. Mar. Biol. 137, 893898. CrossRefGoogle Scholar
Moran, A.L., Marko, P.B., 2005, A simple technique for physical marking of larvae of marine bivalves. J. Shellfish Res. 24, 567571. Google Scholar
Nakahara, H., 1961, Determination of growth rates of nacreous layer by the administration of tetracycline. Bull. Nat. Pearl Res. Lab. 6, 607614. Google Scholar
Pineiro, C., Rey, J., De Pontual, H., Goni, R., 2007, Tag and recapture of European hake (Merluccius merluccius L.) off the Northwest Iberian Peninsula: First results support fast growth hypothesis. Fish. Res. 88, 150154. CrossRefGoogle Scholar
Pirker, J.G., Schiel, D.R., 1993, Tetracycline as a fluorescent shell marker in the abalone Haliotis iris . Mar. Biol. 116, 8186. CrossRefGoogle Scholar
Riascos, J., Guzma, N., Laudien, J., Heilmayer, O., Oliva, M., 2007, Suitability of three stains to mark shells of Concholepas concholepas (Gastropoda) and Mesodesma donacium (Bivalvia). J. Shellfish Res. 20, 4349. CrossRefGoogle Scholar
Richardson, C.A., Crisp, D.J., Runham, N.W., 1979, Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edule (L.). Malacologia 18, 277290. Google Scholar
Richardson, C.A., Crisp, D.J., Runham, N.W., 1980, An endogenous rhythm in shell deposition in Cerastoderma edule . J. Mar. Biol. Assoc. UK 60, 9911004. CrossRefGoogle Scholar
Richardson, C.A., Crisp, D.J., Runham, N.W., 1981, Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule . J. Mar. Biol. Assoc. UK 61, 465476. CrossRefGoogle Scholar
Rowley, R.J., Mackinnon, D.I., 1995, Use of the fluorescent marker calcein in biomineralisation studies of brachiopods and other marine organisms. Bull. Inst. Oceanogr. Fish. 14, 111120. Google Scholar
Schmitt, P.D., 1984, Marking growth increments in otoliths of larval and juvenile fish by immersion in tetracycline to examine the rate of increment formation. Fish. Bull. 82, 237242. Google Scholar
Schöne, B.R., Tanabe, K., Dettman, D.L., Sato, S., 2003, Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol. 142, 473485. CrossRefGoogle Scholar
Schöne, B.R., 2008, The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells., Geo Mar. Lett. 28, 269285. Google Scholar
Thebault, J., Chauvaud, L., Clavier, J., Fichez, R., Morize, E., 2006, Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Mar. Biol. 149, 257267. CrossRefGoogle Scholar
Wanamaker, A.D., Baker, A., Butler, P., Richardson, C.A., Scourse, J.D., Ridgway, I., Reynolds, D.J., 2009, A novel method for imaging internal growth patterns in marine molluscs: a fluorescence case study on the aragonitic shell of the marine bivalve Arctica islandica (Linnaeus). Limnol. Oceanogr. Methods 7, 673681. CrossRefGoogle Scholar
Wilbur K. M., Owen G., 1964, Growth. In: Wilbur K.M., Yonge C.M. (Eds). Physiology of the Mollusca. Academic Press, New York, pp. 211–242.