Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:09:21.822Z Has data issue: false hasContentIssue false

Ontogenetic differentiation of swimming performance and behaviour in relation to habitat availability in the endangered North Sea houting (Coregonus oxyrinchus)

Published online by Cambridge University Press:  30 July 2012

Søren Brandt Poulsen*
Affiliation:
Fisheries and Maritime Museum, 6710 Esbjerg V, Denmark
Lasse Fast Jensen
Affiliation:
Fisheries and Maritime Museum, 6710 Esbjerg V, Denmark
Carsten Schulz
Affiliation:
Christian-Albrechts-Universität zu Kiel, Institute for Animal Breeding and Husbandry, 24098 Kiel, Germany Gesellschaft für Marine Aquakultur (GMA) mbH, 25761 Büsum, Germany
Michael Deacon
Affiliation:
Danish Ministry of the Environment, Ribe Environmental Centre, Water and Nature Division, 6760 Ribe, Denmark
Knud Erik Meyer
Affiliation:
Technical University of Denmark, Department of Mechanical Engineering, 2800 Kgs, Lyngby, Denmark
Tassilo Jäger-Kleinicke
Affiliation:
Tassilo Jäger-Kleinicke, 24147 Kiel, Germany
Helmut Schwarten
Affiliation:
Fisheries Helmut Schwarten, 23714 Malente, Germany
Jon Christian Svendsen
Affiliation:
Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, 8600 Silkeborg, Denmark University of Copenhagen, Marine Biological Laboratory, Biological Institute, 3000 Helsingør, Denmark
*
a Corresponding authors: [email protected]
Get access

Abstract

The survival of the highly endangered, anadromous fish species North Sea houting (Coregonus oxyrinchus) depends on the correct timing of downstream dispersal during its early ontogenetic stages. To date, however, no studies have investigated the ontogenetic differentiation of swimming performance and behaviour, including the potential of habitat complexity to influence dispersal rates. By testing larval and juvenile North Sea houting in a laboratory, we examined (1) swimming performance measured as maximum swimming performance (Umax) and routine swimming speed (Uroutine) and (2) the potential of habitat complexity (i.e., cover providing shade) to influence dispersal behaviour in an indoor stream channel. The Umax and the Uroutine were 9.4 and 4.6cm s-1, respectively, in the larvae [body length (BL) s-1: 7.3 and 3.5, respectively], and 25.2 and 16.3 cm s-1 in the juveniles (BL s-1: 7.0 and 5.2, respectively). We compared laboratory swimming performance data with water speeds in North Sea houting spawning areas in the Danish River Vidaa. Results showed that the water speeds present in 95% and 85% of the water column caused downstream displacement of larvae and juveniles, respectively. However, areas with slow-flowing water near river banks and river beds could function as nursery habitats. Stream channel experiments showed that cover providing shade caused delayed dispersal in both larvae and juveniles, but the larvae dispersed later and spent less time under cover than the juveniles, a finding that implies ontogenetic effects. Finally, the larvae refused to cross an upstream-positioned cover, a behaviour that was not observed in the juveniles. Therefore, habitat complexity may have the potential to influence dispersal behaviour in both larval and juvenile North Sea houting. Overall, we provided the first evidence of ontogenetic differentiation in the North Sea houting. These findings will be valuable for the development and dissemination of science-based conservation strategies.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas Ø., Einum S., Klemetsen A., Skurdal J., 2011, Atlantic salmon ecology. Oxford, Wiley, Lucas M.C., Baras E., Migration of freshwater fishes, London, Blackwell Science.
Albrecht H.E., Borys M., Damaschke N., Tropea C., 2003, Laser doppler and phase doppler measurement techniques. Berlin, Heidelberg, New York, Springer.
Anneville, O., Berthon, V., Glippa, O., Mahjoub, M.S., Molinero, J.C., Souissi, S., 2011, Ontogenetic dietary changes of whitefish larvae : insights from field and experimental observations. Environ. Biol. Fishes 91, 2738. CrossRefGoogle Scholar
Bell, W.H., Terhune, L.D.B., 1970, Water tunnel design for fisheries research. J. Fish. Res. Board Can. Tech. Rep. 195, 169. Google Scholar
Bernatchez, L., Vuorinen, J.A., Bodaly, R.A., Dodson, J.J., 1996, Genetic evidence for reproductive isolation and multiple origins of sympatric trophic ecotypes of whitefish (Coregonus). Evolution 50, 624635. Google Scholar
Borcherding, J., Scharbert, A., Urbatzka, R., 2006, Timing of downstream migration and food uptake of juvenile North Sea houting stocked in the Lower Rhine and the Lippe (Germany). J. Fish Biol. 68, 12711286. CrossRefGoogle Scholar
Brett, J.R., 1964, The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Board Can. 21, 11831226. CrossRefGoogle Scholar
Bushnell, P.G., Jones, D.R., Steffensen, J.F., Schurmann, H., 1994, Exercise metabolism in 2 species of cod in Arctic waters. Polar Biol. 14, 4348. CrossRefGoogle Scholar
Cattanéo, F., Hugueny, B., Lamouroux, N., 2003, Synchrony in brown trout, Salmo trutta, population dynamics : a “Moran effect” on early-life stages. Oikos 100, 4354. CrossRefGoogle Scholar
Cote, J., Fogarty, S., Weinersmith, K., Brodin, T., Sih, A., 2010, Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. Lond. B. Biol. Sci. 277, 15711579. CrossRefGoogle Scholar
Crisp, D.T., 1991, Stream channel experiments on downstream movement of recently emerged trout, Salmo trutta L., and salmon, S. salar L. – III. Effects of developmental stage and day and night upon dispersal. J. Fish Biol. 39, 371381. Google Scholar
Crisp, D.T., Hurley, M.A., 1991a, Stream channel experiments on downstream movement of recently emerged trout, Salmo trutta L., and salmon, S. salar L. – I. Effect of four different water velocity treatments upon dispersal rate. J. Fish Biol. 39, 347361. Google Scholar
Crisp, D.T., Hurley, M.A., 1991b, Stream channel experiment on downstream movement of recently emerged trout, Salmo trutta L. and salmon, S. salar L. – II. Effect of constant and changing velocities and of day and night upon dispersal rate. J. Fish Biol. 39, 363370. Google Scholar
Dabrowski, K.R., Kok, L.Y., Takashima, F., 1986, How efficiently do fish larvae and juveniles swim. Comp. Biochem. Physiol. A 85, 657661. CrossRefGoogle Scholar
Dowling, L.M., Godin, J.G.J., 2002, Refuge use in a killifish : influence of body size and nutritional state. Can. J. Zool. 80, 782788. CrossRefGoogle Scholar
Enders, E.C., Boisclair, D., Roy, A.G., 2003, The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 60, 11491160. CrossRefGoogle Scholar
Etheridge, E.C., Adams, C.E., Bean, C.W., Durie, N.C., Gowans, A.R.D., Harrod, C., Lyle, A.A., Maitland, P.S., Winfield, I.J., 2012, Are phenotypic traits useful for differentiating among a priori Coregonus taxa. J. Fish Biol. 80, 387407. CrossRefGoogle ScholarPubMed
Fabricius, E., Lindroth, A., 1954, Experimental observations on the spawning of whitefish, Coregonus lavaretus L., in the stream aquarium of the Hölle laboratory at River Indalsälven. Rep. Inst. Freshw. Res. Drottningholm 35, 105112. Google Scholar
Farrell, A.P., 2007, Cardiorespiratory performance during prolonged swimming tests with salmonids : a perspective on temperature effects and potential analytical pitfalls. Philos. Trans. R. Soc. B. 362, 20172030. CrossRefGoogle ScholarPubMed
Farrell, A.P., 2008, Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests. J. Fish. Biol. 72, 693710. CrossRefGoogle Scholar
Freyhof, J., Schöter, C., 2005, The houting Coregonus oxyrinchus (L.) (Salmoniformes : Coregonidae), a globally extinct species from the North Sea basin. J. Fish Biol. 67, 713729. CrossRefGoogle Scholar
Gehrke, P.C., Fidler, L.E., Mense, D.C., Randall, D.J., 1990, A respirometer with controlled water-quality and computerized data acquisition for experiments with swimming fish. Fish Physiol. Biochem. 8, 6167. CrossRefGoogle ScholarPubMed
Guan, L., Snelgrove, P.V.R., Gamperl, A.K., 2008, Ontogenetic changes in the critical swimming speed of Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin) larvae and the role of temperature. J. Exp. Mar. Biol. Ecol. 360, 3138. CrossRefGoogle Scholar
Hansen F.T., Rosshaug P.S., Murray C., Madsen M., Kristensen L., Møller B., 2008, Modellering af snæbelynglens migration. Vand & Jord 15, 1, 23–27 (in Danish).
Heggenes, J., Traaen, T., 1988, Downstream migration and critical water velocities in stream channels for fry of four salmonid species. J. Fish Biol. 32, 717727. CrossRefGoogle Scholar
Hirzel, A.H., Le Lay, G., 2008, Habitat suitability modelling and niche theory. J. Appl. Ecol. 45, 13721381. CrossRefGoogle Scholar
Hoagman W.J., 1974, Vital activity parameters as related to the early life history of larval and post-larval lake whitefish Coregonus clupeaformis. In : Blaxter J.H.S. (eds.), The early life history of fishes, Berlin, Springer, pp. 547–558.
Hvidt C.B., Christensen I.G., 1990, Træk af nordsøsnæblens (Coregonus oxyrhynchus L.) biologi i Vidå-systemet (Master’s thesis). Aarhus, the Zoological Laboratory, University of Aarhus (in Danish).
Jacobsen, M.W., Hansen, M.M., Orlando, L., Bekkevold, D., Bernatchez, L., Willerslev, E., Gilbert, M.T.P., 2012, Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (Coregonus spp.). Mol. Ecol., 21, 27272742. CrossRefGoogle Scholar
Jensen, A.J., Johnsen, B.O., 1999, The functional relationship between peak spring floods and survival and growth of juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Funct. Ecol. 13, 778785. CrossRefGoogle Scholar
Jensen A.R., Ejby-Ernst M., Møller B., Grøn P.N., 2002, Status for bestande af snæbel Coregonus oxyrhynchus i Vadehavsområdet 1989–1998. In : Pihl S., Laursen K. (eds.), Kortlægning af arter omfattet af EF-Habitatdirektivet 1997–2000 (Arbejdsrapport fra DMU nr. 167), Copenhagen, Danish Ministry of the Environment, pp. 15–55 (in Danish).
Jensen A.R., Nielsen H.T., Ejbye-Ernst M., 2003, National management plan for the houting. Ribe, Danish Ministry of the Environment, Forest and Nature Agency, the County of Sønderjylland and the County of Ribe.
Koumoundouros, G., Ashton, C., Xenikoudakis, G., 2009, Ontogenetic differentiation of swimming performance in Gilthead seabream (Sparus aurata, Linnaeus 1758) during metamorphosis. J. Exp. Mar. Biol. Ecol. 370, 7581. CrossRefGoogle Scholar
Liao, J.C., 2007, A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 19731993. CrossRefGoogle ScholarPubMed
Lindroth, A., 1957, A study of the whitefish (Coregonus) of the Sundsvall Bay District. Rep. Inst. Freshwater Res. Drottningholm 38, 70108. Google Scholar
Lucas M.C., Baras E., 2001, Migration of freshwater fishes, London, Blackwell Science.
Krause, J., Loader, S.P., Kirkman, S., Ruxton,, G.D., 1999, Refuge use by fish as a function of body weight changes. Acta Ethol. 2, 2934. CrossRefGoogle Scholar
Krause, J., Loader, S.P., McDermott, J., Ruxton, G.D., 1998, Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proc. R. Soc. Lond. B. Biol. Sci. 265, 23732379. CrossRefGoogle Scholar
Madsen M., Murray C., 2007, Modellering af de hydrauliske konsekvenser samt snæbellarveopvækstbetingelserne ved gennemførelse af snæbelprojekt i Hestholm og Nørresø. Hørsholm, Forest and Nature Agency – Lindet Statsskovdistrikt, Landsdelscenter Sydjylland (in Danish).
MacKenzie, B.R., Kiørboe, T., 1995, Encounter rates and swimming behavior of pause-travel and cruise larval fish predators in calm and turbulent environments. Limnol. Oceanogr. 40, 12781289. CrossRefGoogle Scholar
Mariani, P., MacKenzie, B.R., Visser, A.W., Botte, V., 2007, Individual-based simulations of larval fish feeding in turbulent environments. Mar. Ecol. Prog. Ser. 347, 155169. CrossRefGoogle Scholar
Mesick, C.F., 1988, Effects of food and cover on numbers of apache and brown trout establishing residency in artificial stream channels. Trans. Am. Fish. Soc. 117, 421431. 2.3.CO;2>CrossRefGoogle Scholar
Østbye, K., Bernatchez, L., Næsje, T.F., Himberg, J.M., Hindar, K., 2005, Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol. Ecol. 14, 43714387. CrossRefGoogle ScholarPubMed
Østbye, K., Amundsen, P.-A., Bernatchez, L., Klemetsen, A., Knudsen, R., Kristoffersen, R., Naesje, T.F., Hindar, K, 2006, Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol. Ecol. 15, 39834001. CrossRefGoogle ScholarPubMed
Oufiero, C.E., Garland, T. Jr, 2009, Repeatability and correlation of swimming performances and size over varying time-scales in the guppy (Poecilia reticulata). Funct. Ecol. 23, 969978. CrossRefGoogle Scholar
Peake, S., McKinley, R.S., 1998, A re-evaluation of swimming performance in juvenile salmonids relative to downstream migration. Can. J. Fish. Aquat. Sci. 55, 682687. CrossRefGoogle Scholar
Pécseli, H.L., Trulsen, J., Fiksen, Ø., 2010, Predator-prey contact and capture rates in turbulent water : analytical models and numerical tests. Prog. Oceanogr. 85, 171179. CrossRefGoogle Scholar
Poulsen, S.B., Svendsen, J.C., Jensen, L.F., Schulz, C., Jäger-Kleinicke, T., Schwarten, H., 2010, Effects of food deprivation on refuge use and dispersal in juvenile North Sea houting Coregonus oxyrinchus under experimental conditions. J. Fish Biol. 77, 17021708. CrossRefGoogle ScholarPubMed
Pusey, B.J., Arthington, A.H., 2003, Importance of the riparian zone to the conservation and management of freshwater fish : a review. Mar. Freshw. Res. 54, 116. CrossRefGoogle Scholar
Rasmussen P.C., 2004, Opvækstområder for snæbel i Vidå og Ribe Å. Ribe, The County of Sønderjylland, The County of Ribe and Forest and Nature Agency (in Danish).
Rehage, J.S., Sih, A., 2004, Dispersal behavior, boldness, and the link to invasiveness : a comparison of four Gambusia species. Biol. Invasions 6, 379391. CrossRefGoogle Scholar
Reidy, S.P., Kerr, S.R., Nelson, J.A., 2000, Aerobic and anaerobic swimming performance of individual Atlantic cod. J. Exp. Biol. 203, 347357. Google Scholar
Rice, W.R., 1989, Analyzing tables of statistical tests. Evolution 43, 223225. CrossRefGoogle ScholarPubMed
Saltveit, S.J., Bremnes, T., Lindås, O.R., 1995, Effect of sudden increase in discharge in a large river on newly emerged Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) fry. Ecol. Freshw. Fish 4, 168174. CrossRefGoogle Scholar
Sih, A., 1997, To hide or not to hide? Refuge use in a fluctuating environment. Trend. Ecol. Evol. 12, 375376. CrossRefGoogle ScholarPubMed
Sokal R.R., Rohlf F.J., 1995, Biometry. 3rd edition, New York, W.H. Freeman and Company.
Stoltze M., Pihl S., 1998, Rødliste 1997 over planter og dyr i Danmark, Ministry of the Environment, National Environmental Research Institute and Forest and Nature Agency, Denmark (in Danish).
Taguchi, M., Liao, J.C., 2011, Rainbow trout consume less oxygen in turbulence : the energetics of swimming behaviours at different speeds, J. Exp. Biol. 214, 4281436. CrossRefGoogle Scholar
Thomsen D.S., 2003, Udvikling af saltvandstolerance hos snæblen (Coregonus oxyrhynchus) (Master’s thesis). Aarhus, Institute of Biology, University of Southern Denmark (in Danish).
Tritico, H.M., Cotel, A.J., 2010, The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 213, 22842293. CrossRefGoogle Scholar
Vehanen, T., Bjerke, P.L., Heggenes, J., Huusko, A., Mäki-Petäys, A., 2000, Effect of fluctuating flow and temperature on cover type selection and behaviour by juvenile brown trout in artificial flumes. J. Fish Biol. 56, 923937. CrossRefGoogle Scholar
Videler J.J., 1993, Fish swimming. 1st edition, London, Chapman & Hall.
Vonlanthen, P., Bittner, D., Hudson, A.G., Young, K.A., Müller, R., Lundsgaard-Hansen, B., Roy, D., Di Piazza, S., Largiader, C.R., Seehausen, O., 2012, Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357362. CrossRefGoogle ScholarPubMed
Webb, P.W., Kostecki, P.T., Stevens, E.D., 1984, The effect of size and swimming speed on locomotor kinematics of rainbow trout. J. Exp. Biol. 109, 7795. Google Scholar
Wenger, S.J., Isaak, D.J., Luce, C.H., Neville, H.M., Fausch, K.D., Dunham, J.B., Dauwalter, D.C., Young, M.K., Elsner, M.M., Rieman, B.E., Hamlet, A.F., Williams, J.E., 2011, Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc. Natl. Acad. Sci. 108, 1417514180. CrossRefGoogle ScholarPubMed
Wilzbach, M.A., 1985, Relative roles of food abundance and cover in determining the habitat distribution of stream-dwelling cutthroat trout (Salmo-Clarki). Can. J. Fish. Aquat. Sci. 42, 16681672. CrossRefGoogle Scholar
Wolter, C., Arlinghaus, R., 2003, Navigation impacts on freshwater fish assemblages : the ecological relevance of swimming performance. Rev. Fish Biol. Fish. 13, 6389. CrossRefGoogle Scholar
Wootton R.J., 1994, Energy allocation in the threespine stickleback. In : Bell M.A., Foster S.A. (eds.), the evolutionary biology of the threespine stickleback. Oxford, Science Publications, pp. 116–143.