Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-20T11:34:30.589Z Has data issue: false hasContentIssue false

Impact of trout aquaculture on water quality and farm effluent treatment options

Published online by Cambridge University Press:  08 April 2009

Paul-Daniel Sindilariu*
Affiliation:
Bavarian State Research Centre for Agriculture, Institute for Fishery, Weilheimer Str. 8, 82319 Starnberg, Germany
Reinhard Reiter
Affiliation:
Bavarian State Research Centre for Agriculture, Institute for Fishery, Weilheimer Str. 8, 82319 Starnberg, Germany
Helmut Wedekind
Affiliation:
Bavarian State Research Centre for Agriculture, Institute for Fishery, Weilheimer Str. 8, 82319 Starnberg, Germany
Get access

Abstract

In the context of the European Water Framework Directive, the in- and outflow water quality from 13 German trout farms, rearing mainly rainbow trout (Oncorhynchus mykiss) and using inflow rates between 0.03–0.80 m3 s−1, were monitored for point-source pollution. The farms had a significant effect on the effluent quality and macro-invertebrate fauna in adjacent streams (saprobic index based on species assemblage and abundance was 1.56–2.10 upstream of the farms but increased to 2.06–2.37 downstream of the farms). Inflow water quality, type of rearing unit, feeding intensity (amount of feed input in relation to water resources) and effluent treatment method could be used to predict effluent quality by 50 to 88% for most water characteristics. Based on these results, different effluent treatment options were monitored for their treatment performance. Concrete sedimentation basins 11 m × 7 m × 1.2 m and 5.5 m ×  3.3 m × 1.5 m (L × W × H), respectively, used for total farm effluent had little or no treatment effects. The micro-screen examined was relatively effective on particulate water components, measured as total phosphorous (TP), biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS), resulting in treatment efficiencies of 29–53%, which is less than expected from data in the literature. The constructed wetland examined showed the highest treatment efficiency: more than 35% for TP, COD, BOD5, TSS and total ammonia nitrogen (TAN). From these results and data from the literature, treatment strategies for trout farm effluents can be developed, depending on the rearing system and production intensity.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arias, C.A., Del Bubba, M., Brix, H., 2001, Phosphorous removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 35, 11591168. CrossRef
Bergheim A., Asgard T., 1996, Waste production from aquaculture. In: Baird D.J., Beveridge M.C.M., Kelly L.A., Muir J.F. (Eds.) Aquaculture and water resource management. Blackwell Science Ltd., Oxford, pp. 50–80.
Bergheim, A., Sanni, S., Indrevik, G., Holland, P., 1993, Sludge removal from salmonid tank effluent using rotating microsieves. Aquac. Eng. 12, 97109. CrossRef
Bergheim, A., Cripps, S.J., Liltved, H., 1998, A system for the treatment of sludge from land-based fish-farms. Aquat. Living Resour. 11, 279287. CrossRef
Boaventura, R., Pedro, A.M., Coimbra, J., Lencastre, E., 1997, Trout farm effluents: characterization and impact an the receiving streams. Environ. Pollut. 95, 379387. CrossRef
Brinker A., 2005, Suspended solids in flow-through aquaculture – dynamics and management. Hartung-Gorre Verlag Konstanz.
Brinker, A., Rösch, R., 2005, Factors determining the size of suspended solids in a flow-through fish farm. Aquac. Eng. 33, 119. CrossRef
Brinker, A., Schröder, H.G., Rösch, R., 2005a, A high-resolution technique to size suspended solids in flow-through fish farms. Aquac. Eng. 32, 325341. CrossRef
Brinker, A., Koppe, W., Rösch, R., 2005b, Optimized effluent treatment by stabilized trout faeces. Aquaculture 249, 125144. CrossRef
Brinker, A., Koppe, W., Rösch, R., 2005c, Optimizing trout farm effluent treatment by stabilizing trout feces – A field trial. N. Am. J. Aquac. 67, 244258. CrossRef
Brix, H., 1997, Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 35, 1117.
Bureau, D.P., Cho, C.Y., 1999, Phosphorus utilization by rainbow trout (Oncorhynchus mykiss): estimation of dissolved phosphorus waste output. Aquaculture 179, 127140. CrossRef
Camargo, J.A., 1994, The importance of biological monitoring for the ecological risk assessment of freshwater pollution: A case study. Environ. Internat. l 20, 229238. CrossRef
Chen S., Timmons M.B., Bisogni Jr. J.J., Aneshansley D.J., 1993. Suspended-solids removal by foam fractionation. Progress. Fish-Cult. 55, 69–75.
Cho, C.Y., Bureau, D.P., 1997, Reduction of waste output from salmonid aquaculture through feeds and feeding. Progress. Fish-Cult. 59, 155160. 2.3.CO;2>CrossRef
Cripps, S.J., 1994, Minimizing outputs: treatment. J. Appl. Ichthyol. 10, 284294. CrossRef
Cripps S.J., Kelly L.A., 1996, Reductions in wastes from Aquaculture. In: Baird D.J., Beveridge M.C.M., Kelly L.A., Muir J.F. (Eds.), Aquaculture and water resource management. Blackwell Science Ltd., Oxford, pp. 166–201.
Cripps, S.J., Bergheim, A., 2000, Solids management and removal for intensive land-based aquaculture production systems. Aquac. Eng. 22, 3356. CrossRef
Del Bubba, M., Arias, C.A., Brix, H., 2003, Phosphorous absorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res. 37, 33903400. CrossRef
DIN, 2006, Deutsches Einheitsverfahren zur Wasser-, Abwasser-, und Schlamm-Untersuchung, physikalische, chemische, biologische und mikrobiologische Verfahren. Wasserchemische Gesellschaft – Fachgruppe in der Gesellschaft Deutscher Chemiker, NormenausschußWasserwesen im Deutschen Institut für Normung E.V. (Ed.), Wiley Berlin, Wien, Zürich.
Doughty, C.R., McPhail, C.D., 1995, Monitoring the environmental impacts and consent compliance of freshwater fish farms. Aquac. Res. 26, 557565. CrossRef
European Commission, 2006, Facts and figures on the CFP. Basic data on the Common Fisheries Policy. Office for Official Publications of the European Communities, Luxembourg.
FAO, 2006, The state of world fisheries and aquaculture. http://www.fao.org.
Foy, R.H., Rosell, R., 1991, Loadings and phosphorus from a Northern Ireland fish farm. Aquaculture 96, 1730. CrossRef
Green J.A., Hardy R.W., Brannon E.L., 2002, Effects of dietary phosphorus and lipid levels on utilization and excretion of phosphorus and nitrogene by rainbow trout (Onchorhynchus mykiss). 1. Laboratory-scale study. Aquac. Nutr. 8, 279–290.
Henderson, J.P., Bromage, N.R., 1988, Optimisinig the removal of suspended solids from aquacultural effluents in settlement lakes. Aquac. Eng. 7, 167181. CrossRef
Lawson, T.B., 1995, Fundamentals of aquacultural engineering. Chapman and Hall, New York. Lefebvre S., Bacher C., Meuret A., Hussenot J., 2001, Modeling approach of nitrogen and phosphorus exchanges at the sediment-water interface of an intensive fishpond system. Aquaculture 195, 279297.
Loch, D.D., West, J.L., Perlmutter, D.G., 1996, The effect of trout farm effluent on the taxa richness of benthic macroinvertebrates. Aquaculture 147, 3755. CrossRef
MacAllister Elliot and Partners LTD., 1999, Forward study of community aquaculture, summary report. European Commission Fisheries Directorate General.
Maillard, V.M., Boardman, G.D., Nyland, J.E., Kuhn, D.D., 2005, Water quality and sludge characterization at raceway-system trout farms. Aquac. Eng. 33, 271284. CrossRef
Milden A., Redding T., 1998, Environmental management for Aquaculture. Chapman and Hall Aquaculture Series 2. Chapman and Hall, London, Weinheim, New York, Philadelphia.
O'Bryen, P.J., Lee, C.-S., 2003, Management of aquaculture effluents workshop discussion summary. Aquaculture 266, 227242. CrossRef
Piedrahita, R.H., 2003, Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226, 3544. CrossRef
Platzer, C., 1999, Design recommendations for subsurface flow constructed wetlands for nitrification and dentirification. Water Sci. Technol. 40, 257263.
Rennert, B., 1994, Water pollution by a land-based trout farm. J. Appl. Ichthyol. 10, 373378. CrossRef
Rolauffs, P., Stubauer, I., Zahradkova, S., Brabec, K., Moog, O., 2004, Integration of the saprobic system into the European Union Water Framework Direktive. Hydrobiologia 516, 285298. CrossRef
Roque d'Orbcastel, E., Blancheton, J.-P., Boujard, T., Aubin, J., Moutounet, Y., Przybyla, C., Belaud, A., 2008, Comparison of two methods for evaluating waste of a flow through trout farm. Aquaculture 274, 7279. CrossRef
Rosenthal, H., 1994, Fish farm effluents and their control in EC countries: summary of an workshop. J. Appl. Ichthyol. 10, 215224. CrossRef
Roy P.K., Lall S.P., 2004, Urinary phosphorous excretion in haddock, Melanogrammus aeglefinus (L.) and Atlantic salmon, Salmo salar (L.). Aquaculture 233, 369–382.
Schreckenbach, K., Knösche, R., Ebert, K., 2001, Nutrient and energy content of freshwater fishes. J. Appl. Ichthyol. 17, 142144. CrossRef
Schulz, C., Gelbrecht, J., Rennert, B., 2003, Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 217, 207221. CrossRef
Selong, J.H., Helfrich, L.A., 1998, Impacts of trout culture effluent on water quality and biotic communities in Virginia headwater streams. Progress. Fish-Cult. 60, 247262. 2.0.CO;2>CrossRef
Seo, D.C., Cho, J.S., Lee, H.J., Heo, J.S., 2005, Phosphorous retention capacity of filter media for estimating the longevity of constructed wetland. Water Res. 39, 24452457. CrossRef
Sindilariu, P.D., 2007, Reduction in effluent nutrient loads from flow-through facilities for trout production: a review. Aquac. Res. 38, 10051036. CrossRef
Sindilariu, P-D., Schulz, C., Reiter, R., 2007, Treatment of flow-through trout aquaculture effluent in constructed wetland. Aquaculture 270, 92104. CrossRef
Sindilariu, P.D., Wolter, C., Reiter, R., 2008, Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture 277, 179184. CrossRef
Stewart, N.T., Boardman, G.D., Helfrich, L.A., 2006, Characterization of nutrient leaching rates from settled rainbow trout (Oncorhynchus mykiss) sludge. Aquac. Eng. 35, 191198. CrossRef
Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R.A., Moormann, H., 2003, Effect of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 22, 93117. CrossRef
Tanner, C.C., Sukias, J.P., 1995, Accumulation of organic solids in gravel-bed constructed wetlands. Water Sci. Technol. 32, 229239.
Tchobanoglous G., Burton F.L., Stensel H.D., 2003, Wastewater engineering: treatment and reuse, 4th edn., McGraw-Hill Inc., New York.
True, B., Johnson, W., Chen, S., 2004, Reducing phosphorous discharge from flow-through aquaculture I: facility and effluent characterization. Aquac. Eng. 32, 129144. CrossRef
Varadi, L., 2001, Review of trends in the development of European inland aquaculture linkages with fisheries. Fish. Manage. Ecol. 8, 453462. CrossRef
Viader, R.C. Jr, Cunningham, J.H., Semmens, K.J., Tierney, A.E., 2005, Effluent and production impacts of flow-through aquaculture operations in West Virginia. Aquac. Eng. 33, 258270. CrossRef
von Tümpling W., Friedrich G., 1999, Methoden der Biologischen Gewässeruntersuchung, Band 2 – Biologische Gewässeruntersuchung. Gusav Fischer, Jena.
Vymazal, J., 2005, Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 25, 478490. CrossRef
Wedekind H., 1996, Ermittlung der Leistungsparameter verschiedener Methoden und Techniken zur Reduzierung der Umweltbelastung durch offene Aquakulturanlagen. Forschungsbericht des Instituts für Binnenfischerei Potsdam-Sacrow.
Wheaton F.W, Singh S., 1999, Aquacultural Systems. In: Bartali H., Wheaton F. (Eds.), CIGR Handbook of agricultural engineering, vol. II. American Society of Agricultural Engineers, St. Joseph, MI, pp. 211–217.
Willoughby S., 1999, Manual of salmonid farming. Fishing News Books, Blackwell Science, Oxford.