Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-20T02:28:26.717Z Has data issue: false hasContentIssue false

Hydrodynamic abilities of riverine fish: a functional link between morphology and velocity use

Published online by Cambridge University Press:  08 April 2009

Pierre Sagnes
Affiliation:
UMR CNRS 5023, Ecologie des Hydrosystèmes Fluviaux, Université Lyon 1, 69622 Villeurbanne, France Université de Lyon, 69003 Lyon, France
Bernhard Statzner
Affiliation:
UMR CNRS 5023, Ecologie des Hydrosystèmes Fluviaux, Université Lyon 1, 69622 Villeurbanne, France Université de Lyon, 69003 Lyon, France
Get access

Abstract

To better understand the effects of perturbations (e.g. global change) or habitat restorations on fish population dynamics, it is crucial to improve the knowledge about strategies of habitat use (especially in terms of velocity use) by fish. Many recent studies accurately describe kinematics or energetic budgets of swimming activities, which are often species-specific and hardly transferable to other species. The main goal of the present study was to revive more general ecomorphological relationships between body shape and strategies of velocity use by highlighting a functional aspect of fish morphology: the hydrodynamic potential. For this purpose, potential relationships between minimum drag coefficients (Cdmin, constant at high Reynolds numbers), velocity use, fish morphology and drag in given flow conditions were investigated. To assess these relationships, dead drag values (i.e. drag values measured on dead, straight individuals) of 27 riverine species (108 individuals in total) common in France were experimentally measured under various flow conditions. These values served to estimate the Cdmin of fish. For pelagic species, Cdmin values were related to both preferred and near-maximum flow velocity used by the fish in nature. Explaining 61% of its variability, Cdmin was described using six morphological variables, which demonstrates the functional link between fish morphology and velocity use. For all studied species, a model explained 94% of drag variability using the Reynolds number of fish and three morphological variables. The link between morphology and drag force at given velocity conditions provides simple elements for modelling fish energetics in the context of physical habitat use. Moreover, the relationships between fish velocity use and their Cdmin open many applied perspectives, such as assessing the species abilities to withstand discharge modulations.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E.J., McGillis, W.R., Grosenbaugh, M.A., 2001, The boundary layer of swimming fish. J. Exp. Biol. 204, 81102.
Atchley, W.R., Gaskins, C.T., Anderson, D., 1976, Statistical properties of ratios. I- Empirical results. Syst. Zool. 25, 137148.
Barlow, G.W., 1961, Causes and significance of morphological variation in fishes. Syst. Zool. 10, 105117. CrossRef
Barrett, D.S., Triantafyllou, M.S., Yue, D.K.P., Grosenbaugh, M.A., Wolfgang, M.J., 1999, Drag reduction in fish-like locomotion. J. Fluid Mech. 392, 183212. CrossRef
Bellwood, D.R., Wainwright, P.C., Fulton, C.J., Hoey, A., 2002, Assembly rules and functional groups at global biogeographical scales. Funct. Ecol. 16, 557562. CrossRef
Bernadsky, G., Sar, N., Rosenberg, E., 1993, Drag reduction of fish skin mucus. Relationship to mode of swimming and size. J. Fish Biol. 42, 797800.
Blake R.W., 1983, Fish locomotion. Cambridge University Press.
Boily, P., Magnan, P., 2002, Relationship between individual variation in morphological characters and swimming costs in brook charr (Salvelinus fontinalis) and yellow perch (Perca flavescens). J. Exp. Biol. 205, 10311036.
Boisclair, D., Sirois, P., 1993, Testing assumptions of fish bioenergetics models by direct estimation of growth, consumption, and activity rates. Trans. Am. Fish. Soc. 122, 784796. 2.3.CO;2>CrossRef
Borazjani, I., Sotiropoulos, F., 2008, Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211, 15411558. CrossRef
Brinsmead, J., Fox, M.G., 2002, Morphological variation between lake- and stream-dwelling rock bass and pumpkinseed populations. J. Fish Biol. 61, 16191638. CrossRef
Brönmark, C., Pettersson, L.B., 1994, Chemical cues from piscivores induce a change in morphology in crucian carp. Oikos 70, 396402. CrossRef
Broughton N.M., Goldspink G., Jones N.V., 1981, Histological differences in the lateral musculature of 0-group roach, Rutilus rutilus (L.) from different habitats. J. Fish Biol. 18, 117–122.
Charnov, E.L., Berrigan, D., 1991, Dimensionless numbers and the assembly rules for life histories. Phil. Trans. R. Soc. Lond. B. 332, 4148. CrossRef
Denny, M.W., 1994, Extrem drag forces and the survival of wind- and water-swept organisms. J. Exp. Biol. 194, 97115.
Fausch, K.D., 1984, Profitable stream position for salmonids: relating specific growth rate to energy gain. Can. J. Fish. Aquat. Sci. 62, 441451.
Fish, F.E., Beneski, J.T., Ketten, D.R., 2007, Examination of the three-dimensional geometry of cetacean flukes using computed tomography scans: hydrodynamic implications. Anat. Rec. 290, 614623. CrossRef
Fisher, R., Leis, J.M., Clark, D.L., Wilson, S.K., 2005, Critical swimming speed of late-stage coral reef fish larvae: variation within species, among species and between locations. Mar. Biol. 147, 12011212. CrossRef
Frith, H.R., Blake, R.W., 1995, The mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts. J. Exp. Biol. 198, 18631873.
Fuiman, L.A., Batty, R.S., 1997, What a drag it is getting cold: partitioning the physical and physiological effects of temperature on fish swimming. J. Exp. Biol. 200, 17451755.
Gatz, A.J., 1979, Community organization in fishes as indicated by morphological features. Ecology 60, 711718. CrossRef
Gore, J.A., Nestler, J.M., 1988, Instream flow studies in perspective. Regul. Rivers Res. Manage. 5, 129138.
Gray, J., 1936, Studies in animal locomotion. VI. The propulsive powers of the dolphin. J. Exp. Biol. 13, 192199.
Gray, J., 1957, How fish swim. Scient. Am. 197, 4854. CrossRef
Greenberg, L., Svendsen, P., Harby, A., 1996, Availability of microhabitats and their use by brown trout (Salmo trutta) and grayling (Thymallus thymallus) in the river Vojmån, Sweden. Regul. Rivers Res. Manage. 12, 287303. 3.0.CO;2-3>CrossRef
Guill, J.M., Hood, C.S., Heins, D.C., 2003, Body shape variation within and among three species of darters (Perciformes: Percidae). Ecol. Freshw. Fish 12, 134140. CrossRef
Hesse R., 1924, Tiergeographie auf Ökologischer Grundlage. Jena: Fisher.
Hoerner S.F., 1965, Résistance à l'Avancement dans les Fluides. Paris, Gauthier-Villars.
Holliday F.G.T., 1969, The effects of salinity on the eggs and larvae of teleosts. In: Hoar W.S., Randall D.J. (Eds.) Fish physiology, Vol. 1. New-York, Academic Press, pp. 293–311.
Holopainen, I.J., Aho, J., Vornanen, M., Huuskonen, H., 1997, Phenotypic plasticity and predator effects on morphology and physiology of crucian carp in nature and in the laboratory. J. Fish Biol. 50, 781798. CrossRef
Horwitz, R.J., 1978, Temporal variability patterns and the distributional patterns of stream fishes. Ecol. Monogr. 48, 307321. CrossRef
Hubbs C.L., 1941, The relation of hydrological conditions to speciation in fishes. Symposium on Hydrobiology, Madison, Wisconsin Press, pp. 182–195.
Hughes, N.F., Dill, L.M., 1990, Position choice by drift-feeding salmonids: model and test for arctic grayling (Thymallus arcticus) in subarctic mountain streams, Interior Alaska. Can. J. Fish. Aquat. Sci. 47, 20392048. CrossRef
Hughes, N.F., Kelly, L.H., 1996, A hydrodynamic model for estimating the energetic cost of swimming maneuvers from a description of their geometry and dynamics. Can. J. Fish. Aquat. Sci. 53, 24842493. CrossRef
Keddy, P.A., 1992, Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157164. CrossRef
Koehl M.A.R., 1989, Discussion: from individuals to populations. In: Roughgarden J., May R.M., Levin S.A. (Eds.) Perspectives in ecological theory. Princeton University Press, pp. 39–53.
Koehl, M.A.R., 1996, When does morphology matter? Annu. Rev. Ecol. Syst. 27, 501542. CrossRef
Köhler C., 1992, Morphologische untersuchungen zur intraspezifischen Variabilität des Rotauges, Rutilus rutilus (L.), aus dem Rhein. Fischökologie 6, 43–67.
Kokita, T., Mizota, T., 2002, Male secondary sexual traits are hydrodynamic devices for enhancing swimming performance in a monogamous filefish Paramonacanthus japonicus. J. Ethol. 20, 3542. CrossRef
Lagergren, R., Hellsten, M., Stenson, J.A.E., 1997, Increased drag, and thus lower speed: a cost for morphological defence in Bosmina (Eubosmina) (Crustacea: Cladocera). Funct. Ecol. 11, 484488. CrossRef
Lamouroux, N., Capra, H., Pouilly, M., 1998, Predicting habitat suitability for lotic fish: linking statistical hydraulic models with multivariate habitat use models. Regul. Rivers Res. Manage. 14, 111. 3.0.CO;2-D>CrossRef
Lamouroux, N., Capra, H., Pouilly, M., Souchon, Y., 1999a, Fish habitat preferences in large streams of southern France. Freshw. Biol. 42, 673687. CrossRef
Lamouroux, N., Olivier, J.-M., Persat, H., Pouilly, M., Souchon, Y., Statzner, B., 1999b, Predicting community characteristics from habitat conditions: fluvial fish and hydraulics. Freshw. Biol. 42, 275299. CrossRef
Lamouroux, N., Poff, N.L., Angermeier, P.L., 2002, Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients. Ecology 83, 17921807. CrossRef
Lamouroux, N., Souchon, Y., 2002, Simple predictions of instream habitat model outputs for fish habitat guilds in large streams. Freshw. Biol. 47, 15311542. CrossRef
Lang T.G., 1966, Hydrodynamic analysis of cetacean performance. In: Norris K.S. (Ed.) Whales, dolphins and porpoises. Berkley, University of California Press, pp. 410–432.
Lang, T.G., Daybell, D.A., 1963, Porpoise performance tests in a seawater tank. Naval Ordinance Test Station Tech. Publ. 3063, 150.
Langerhans, R.B., 2008, Predictability of phenotypic differentiation across flow regimes in fishes. Int. Comp. Biol. 48, 750768. CrossRef
Langerhans, R.B., Layman, C.A., Langerhans, A.K., Dewitt, T.J., 2003, Habitat-associated morphological divergence in two Neotropical fish species. Biol. J. Linn. Soc. 80, 689698. CrossRef
Liao, J.C., 2007, A review of fish swimming mechanics and behaviour in altered flows. Phil. Trans. R. Soc. Lond. B 362, 19731993. CrossRef
Losos, J.B., 1990, The evolution of form and function: morphology and locomotor performance in west indian Anolis lizards. Evolution 44, 11891203. CrossRefPubMed
Loy A., Cataudella S., Corti M., 1996, Shape changes during the growth of the sea bass, Dicentrarchus labrax (Teleostea: Perciformes), in relation to different rearing conditions. An application of thin-plate spline regression analysis. In: Marcus L.F., Corti M., Loy A., Naylor G., Slice D. (Eds.) Advances in morphometrics. New-York, Plenum Press, pp. 399–405.
Magnan, A., 1930, Les caractéristiques géométriques et physiques des poissons. Ann. Sci. Nat. (10è sér.) 13, 355489.
Mathieson, S., Cattrijsse, A., Costa, M.J., Drake, P., Elliott, M., Gardner, J., Marchand, J., 2000, Fish assemblages of European tidal marshes: a comparison based on species, families and functional guilds. Mar. Ecol. Prog. Ser. 204, 225242. CrossRef
McCutchen C.W., 1977, Froude propulsive efficiency of a small fish, measured by wake visualisation. In: Pedley T.J. (Ed.) Scale effects in animal locomotion. London, Academic Press, pp. 339–363.
McGuigan, K., Franklin, C.E., Moritz, C., Blows, M.W., 2003, Adaptation of rainbow fish to lake and stream habitats. Evolution 57, 104118. CrossRef
McLaughlin R.L., Grant J.W.A., 1994, Morphological and behavioural differences among recently-emerged brook charr, Salvelinus fontinalis, foraging in slow- vs. fast-running water. Environ. Biol. Fishes 39, 289–300.
Miller, G.L., 1984, Seasonal changes in morphological structuring in a guild of benthic stream fishes. Oecologia 63, 106109. CrossRef
Moyle, P.B., Baltz, D.M., 1985, Microhabitat use by an assemblage of California stream fishes: developing criteria for instream flow determination. Trans. Am. Fish. Soc. 114, 695704. 2.0.CO;2>CrossRef
Nestler J.M., Milhous R.T., Layzer J.B., 1989, Instream habitat modeling techniques. In: Gore J.A., Petts G.E. (Eds.), Alternatives in regulated river management. Florida, CRC Press, pp. 295–315.
Oberdorff, T., Hughes, R.M., 1992, Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine basin, France. Hydrobiologia 228, 117130. CrossRef
Pakkasmaa, S., Piironen, J., 2001, Water velocity shapes juvenile salmonids. Evol. Ecol. 14, 721730. CrossRef
Palmer, M.A., Poff, N.L., 1997, The influence of environmental heterogeneity on patterns and processes in stream. J. N. Am. Benthol. Soc. 16, 169173. CrossRef
Persat, H., Olivier, J-.M., Pont D., 1994, Theoretical habitat templets, species traits, and species richness: fish in the Upper Rhône river and its floodplain. Freshw. Biol. 31, 439454. CrossRef
Pettersson, L.B., Brönmark, C., 1999, Energetic consequences of an inducible morphological defence in crucian carp. Oecologia 121, 1218. CrossRef
Pettersson, L.B., Hedenstrom, A., 2000, Energetics, cost reduction and functional consequences of fish morphology. Proc. R. Soc. Lond. B 267, 759764. CrossRef
Pouilly, M., 1993, Habitat, écomorphologie et structure des peuplements de poissons dans trois petits cours d'eau tropicaux de Guinée. Rev. Hydrobiol. Trop. 26, 313325.
Pouilly M., 1994, Relations entre l'habitat physique et les poissons des zones à cyprinidés rhéophiles dans trois cours d'eau du bassin rhodanien: vers une simulation de la capacité d'accueil pour les peuplements. PhD Thesis, Université Lyon I, France.
Power, M.E., Sun, A., Parker, M., Dietrich, W.E., Wootton, J.T., 1995, Hydraulic food-chain models: an approach to the study of food-web dynamics in large rivers. Bioscience 45, 159167. CrossRef
Reilly S.M., Wainwright P.C., 1994, Conclusion: ecological morphology and the power of integration. In: Wainwright P.C., Reilly S.M., (Eds.), Ecological morphology: integrative organismal biology. University of Chicago Press, pp. 339–354.
Reiser, D.W., Wesche, T.A., Estes, C., 1989, Status of instream flow legislation and practices. North America. Fisheries 14, 2229.
Ricklefs R.E., Miles D.M., 1994, Ecological and evolutionary inferences from morphology: an ecological perspective. In: Wainwright P.C., Reilly S.M. (Eds.) Ecological morphology. integrative organismal biology. University of Chicago Press, pp. 13–41.
Riddell, B.E., Leggett, W.C., 1981, Evidence of an adaptive basis for geographic variation in body morphology and time of downstream migration of juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 38, 308320. CrossRef
Robinson, B.W., Wilson, D.S., 1994, Character release and displacement in fishes: a neglected literature. Am. Nat. 144, 596627. CrossRef
Robinson B.W., Wilson D.S., 1995, Experimentally induced morphological diversity in Trinidadian guppies (Poecilia reticulata). Copeia, 294–305.
Rosenfeld, J.S., Boss, S., 2001, Fitness consequences of habitat use for juvenile cutthroat trout: energetic costs and benefits in pools and riffles. Can. J. Fish. Aquat. Sci. 58, 585593. CrossRef
Sagnes P., 1995, Un outil de prise de données sur une image numérisée et son utilité dans les études relatives aux poissons: exemple d'une application concrète en morphométrie. Bull. Fr. Pêche Piscic. 337/338/339, 131-137.
Sagnes P., 1998, Morphométrie, potentiel hydrodynamique et utilisation de l'habitat lotique par les poissons: une nouvelle approche écomorphologique. PhD Thesis, Université Lyon I, France.
Sagnes, P., Champagne, J.-Y., Morel, R., 2000, Shifts in drag and swimming potential during grayling ontogenesis: relations with habitat use. J. Fish Biol. 57, 5268. CrossRef
Sagnes, P., Gaudin, P., Statzner, B., 1997, Shifts in morphometrics and their relation to hydrodynamic potential and habitat use during grayling ontogenesis. J. Fish Biol. 50, 846858. CrossRef
Scarnecchia, D.L., 1988, The importance of streamlining in influencing fish community structure in channelized and unchannelized reaches of a prairie stream. Regul. Rivers Res. Manage. 2, 155166. CrossRef
Schlosser, I.J., 1982, Fish community structure and function along two habitat gradients in a headwater stream. Ecol. Monog. 52, 395414. CrossRef
Schultz, W.W., Webb, P.W., 2002, Power requirements of swimming: do new methods resolve old questions? Integr. Comp. Biol. 42, 10181025. CrossRef
Statzner B., 1987, Ökologische Bedeutung der sohlennahen Strömungsgeschwindigheit für benthische Wirbellose in Fließgewässern. Habilitation Thesis. University of Karlsruhe, Germany.
Statzner, B., Gore, J.A., Resh, V.H., 1988, Hydraulic stream ecology: observed patterns and potential applications. J. N. Am. Benthol. Soc. 7, 307360. CrossRef
Statzner, B., Hildrew, A.G., Resh, V.H., 2001, Species traits and environmental constraints: entomological research and the history of ecological theory. Ann. Rev. Entomol. 46, 291316. CrossRef
Statzner, B., Holm, T.F., 1989, Morphological adaptation of shape to flow: microcurrents around lotic macroinvertebrates with known Reynolds numbers at quasi-natural flow conditions. Oecologia 78, 145157. CrossRef
Thienemann, A., 1918, Lebensgemeinschaft und Lebensraum. Naturwissenschaftliche Wochenschrift Neue Folge 17, 281290, 297–303.
Vadas, R.L.J., Orth, D.J., 2000, Habitat use of fish communities in a Virginia stream system. Env. Biol. Fish. 59, 253269. CrossRef
Videler J.J., 1993, Fish swimming. London, Chapman & Hall.
Videler, J.J., Weihs, D., 1982, Energetic advantages of burst-and-coast swimming of fish at high speeds. J. Exp. Biol. 97, 169178.
Vogel S., 1994, Life in moving fluids. 2nd edn. Princeton University.
Wainwright, P.C., 1996, Ecological explanation through functional morphology: the feeding biology of sunfishes. Ecology 77, 13361343. CrossRef
Webb P.W., 1970, Some aspects of the energetics of swimming of fish with special reference to the cruising performance of rainbow trout. PhD Thesis, University of Bristol, England.
Webb, P.W., 1975, Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Board Can. 190, 1160.
Webb, P.W., 1984, Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24, 107120. CrossRef
Weihs, D., 1980, Energetic significance of changes in swimming modes during growth of larval anchovy, Engraulis mordax. Fish. Bull. 77, 597604.
Welch P.S., 1935, Limnology. New-York, McGraw-Hill Book Company.
Wikramanayake, E.D., 1990, Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure. Ecology 71, 17561764. CrossRef
Wilkinson L., Blank G., Gruber C., 1996, Desktop Data Analysis with SYSTAT. Upper Saddle River, Prentice-Hall.
Wimberger, P.H., 1993, Effects of vitamin C deficiency on body shape and skull osteology in Geophagus brasiliensis: implications for interpretations of morphological plasticity. Copeia 2, 343351. CrossRef
Wolter, C., Bischoff, A., 2001, Seasonal changes of fish diversity in the main channel of the large lowland River Oder. Regul. Rivers Res. Manage. 17, 595608. CrossRef
Yalin M.S., 1992, River mechanics. New-York, Pergamon Press.