Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T01:20:12.908Z Has data issue: false hasContentIssue false

Evaluation of antiviral activity in hemolymph from oysters Crassostrea rhizophorae and Crassostrea gigas

Published online by Cambridge University Press:  22 June 2006

Márcia C. Carriel-Gomes
Affiliation:
Laboratório de Virologia Aplicada, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, UFSC, Campus Universitário Trindade, Florianópolis, SC, Brazil
Jadel M. Kratz
Affiliation:
Laboratório de Virologia Aplicada, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, UFSC, Campus Universitário Trindade, Florianópolis, SC, Brazil
Vanessa D.M. Müller
Affiliation:
Laboratório de Virologia Aplicada, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, UFSC, Campus Universitário Trindade, Florianópolis, SC, Brazil
Célia R.M. Barardi
Affiliation:
Laboratório de Virologia Aplicada, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, UFSC, Campus Universitário Trindade, Florianópolis, SC, Brazil
Cláudia M.O. Simões
Affiliation:
Laboratório de Virologia Aplicada, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, UFSC, Campus Universitário Trindade, Florianópolis, SC, Brazil
Get access

Abstract

This study describes the in vitro antiviral activity of two species of oyster hemolymph (Crassostrea rhizophorae and C. gigas) collected on Southern Brazilian coastline. Either the acellular and cellular fractions were tested against herpes simplex type-1 (HSV-1), human adenovirus respiratory strain (AdV-5) and simian rotavirus (RV-SA11) by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The evaluation of viral inhibition was performed using four different strategies: simultaneous, pre-infection and post-infection treatments and virucidal assays. The cellular fraction from Crassostrea rhizophorae showed the most prominent inhibition of HSV-1 and AdV-5 replication, particularly in post-infection treatment assay. No inhibition of rotavirus replication was observed. Both oyster hemolymph fractions showed virucidal activity against all tested virus in non-cytotoxic concentrations.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barardi, C.R.M., Emslie, K.R., Vesey, G., Williams, K.L., 1998, Development of a rapid and sensitive quantitative assay for rotavirus based on flow cytometry. J. Virol. Meth. 74, 31-37. CrossRef
Belaid, A., Aouni, M., Trabelsi, A., Jemmali, M., Hani, K., 2002, In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J. Med. Virol. 66, 229-234. CrossRef
Bergé, J.P., Bourgougnon, N., Alban, S., Pojer, F., Billaudel, S., Chermann, J.C., Robert, J.M., Franz, G., 1999, Antiviral and anticoagulant activities of a water-soluble fraction of the marine diatom Haslea ostrearia. Planta Med. 65, 604-609. CrossRef
Bettega, J.M.R., Teixeira, H., Bassani, V.L., Barardi, C.R.M., Simões, C.M.O., 2004, Evaluation of the antiherpetic activity of standardized extracts of Achyrocline satureioides. Phytother. Res. 18, 819-823. CrossRef
Blunt, J.W., Copp, B.R., Munro, M.H., Northcote, P.T., Prinsep, M.R., 2004, Marine natural products. Nat. Prod. Rep. 21, 1-49. CrossRef
Bradford, M.B., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. CrossRef
Burleson F.G., Chambers T.M., Wiedbrauk D.L. (Eds.), 1992, Virology: a laboratory manual, Academic, San Diego.
De Vries, D.J., Beart, P.M., 1995, Fishing for drugs from the sea: status and strategies. Trends Pharmacol. Sci. 16, 275-279. CrossRef
Estes, M.K., Graham, D., Mason, B.B., 1981, Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J. Virol. 39, 879-888.
Fields B.N., Knipe D.M., Howley P.M. (Eds.), 1996, Fields Virology, Lippincott-Raven, Philadelphia.
Hudson J.B. (Ed.), 1999, Antiviral compounds from plants, CRC Press, Florida.
Ignacio, B.L., Absher, T.M., Lazoski, C., Solé-Cava, A.M., 2000, Genetic evidence of the presence of two species of Crassostrea (Bivalvia: Ostreidae) on the coast of Brazil. Mar. Biol. 136, 987-991. CrossRef
Lapégue, S., Boutet, I., Leitão, A., Heurtebise, S., Garcia, P., Thiriot-Quiévreux, C., Boudry, P., 2002, Trans-atlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analyses. Biol. Bull. 202, 232-242. CrossRef
Lee, T.G., Maruyama, S., 1998, Isolation of HIV-1 protease-inhibiting peptides from thermolysin hydrolysate of oyster proteins. Biochem. Biophys. Res. Commun. 253, 604-608. CrossRef
Mitta, G., Vandenbulcke, F., Roch, P., 2000, Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett. 486, 185-190. CrossRef
Mossmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55-63. CrossRef
Murakami, T., Niwa, M., Tokunaga, F., Miyata, T., Iwanaga, S., 1991, Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes. Chemotherapy 37, 327-334. CrossRef
Nakamura, T., Furunaka, H., Miyata, T., Tokunaga, F., Muta, T., Iwanaga, S., Niwa, M., Takao, T., Shimoshi, Y., 1988, Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J. Biol. Chem. 263, 16709-16713.
Olicard C., Renault T., Torhy C., Benmansour A., Bourgougnon N., 2005a, Putative antiviral activity in hemolymph from adult Pacific oysters, Crassostrea gigas. Antiviral Res. 66, 147-152.
Olicard, C., Didier, Y., Marty, C., Bourgougnon, N., Renault, T., 2005b, In vitro research of anti-HSV-1 activity in different extracts from Pacific oyster, Crassostrea gigas. Dis. Aquat. Org. 67, 141-147. CrossRef
Prescott, B., Li, C.P., Caldes, G., Martino, E.C., 1966, Chemical studies of paolin. II. An antiviral substance from oysters. Proc. Soc. Exp. Biol. Med. 123, 460-464. CrossRef
Reed, L.J., Muench, H., 1938, A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 27, 493-497.
Schapiro, H.C., 1975, Immunity in decapod crustaceans. Am. Zool. 15, 13-19. CrossRef
Schnapp, D., Kemp, G.D., Smith, V.J., 1996, Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur. J. Biochem. 240, 532-539. CrossRef
Sieuwerts, A., Klijn, J.G.M., Peters, H.A., Foekens, J.A., 1995, The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Eur. J. Clin. Chem. Clin. Biochem. 33, 813-823.
Simões, C.M.O., Amoros, M., Girre, L., 1999, Mechanism of antiviral activity of triterpenoid saponins. Phytother. Res. 13, 323-328. 3.0.CO;2-C>CrossRef
Takeuchi, H., Baba, M., Shigeta, S., 1991, An application of tetrazolium (MTT) colorimetric assay for the screening of anti-herpes simplex virus compounds. J. Virol. Meth. 33, 61-71. CrossRef
White D.O., Fenner F.J. (Eds.), 1994, Medical Virology, Academic, San Diego.
Zasloff, M., 2002, Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. CrossRef