Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T08:22:09.549Z Has data issue: false hasContentIssue false

Egg production in the euryhaline tilapia, Sarotherodonmelanotheron heudelotii, experimentally maintained in fresh, sea andhypersaline waters

Published online by Cambridge University Press:  16 December 2014

Rémi Dugué*
Affiliation:
IRD, UMR 226 ISE-M, c/o IRSTEA, BP 5095, 34196 Montpellier Cedex 05, France
Etienne Baras
Affiliation:
IRD, UMR 226 ISE-M, Université Montpellier 2, 34095 Montpellier Cedex 05, France
Moussa Gueye
Affiliation:
IRD, route des Hydrocarbures, BP 1386, 18524 Dakar, Senegal
Jean-Christophe Avarre
Affiliation:
IRD, UMR 226 ISE-M, Université Montpellier 2, 34095 Montpellier Cedex 05, France
Yan Combes
Affiliation:
IRD, UMR 226 ISE-M, c/o IRSTEA, BP 5095, 34196 Montpellier Cedex 05, France
Christophe Cochet
Affiliation:
IRD, UMR 226 ISE-M, c/o IRSTEA, BP 5095, 34196 Montpellier Cedex 05, France
Marc Legendre
Affiliation:
IRD, UMR 226 ISE-M, Université Montpellier 2, 34095 Montpellier Cedex 05, France
*
a Corresponding author:[email protected]
Get access

Abstract

Through the experiments presented here we wanted to test whether egg production of theblack-chinned tilapia Sarotherodon melanotheron heudelotii underexperimental conditions varies as a function of ambient salinity (fresh waters vs.sea waters vs. hypersaline waters, 0, 35 and 70, respectively)and whether these responses differ between fish acclimated within a few weeks from freshwater to saline and hypersaline environments (experiments E1 and E2, monitoring over 10and 18 weeks), and individuals born and raised all life long at the experimentalsalinities (E3, monitoring over 18 weeks). In total, 233 spawns were collected. In each ofthe three experiments, the reproductive investment (gram of egg per gram of female over 2weeks) did not differ between salinities of 0 and 35, whereas it was 2–3 times lower at 70than at 0–35, because of lower spawning frequency (E1-E3), smaller clutch size (E1) andlower spawn mass (E1-E3). Finally, fish acclimated to salinity from fresh water over a fewweeks and those maintained at a particular salinity all life long showed similarreproductive traits, thereby emphasizing the remarkable physiological plasticity of thisspecies.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004, Image Processing with ImageJ. Biophotonics Int. 11, 3642. Google Scholar
Albaret, J.-J., 1987, Les peuplements de poissons de la Casamance (Sénégal) en période de sécheresse. Rev. Hydrobiol. Trop. 20, 291310. Google Scholar
Alcaraz, C., García-Berthou, E., 2007, Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biol. Conserv. 139, 8392. CrossRefGoogle Scholar
Akinrotimi O.A,Ansa, E.J., Owhonda, K.N., Edun, O.M., Onunkwo, D.N., Opara, J.Y., Anyanwu, P.E., Amachree, D., 2007, Variations in oxygen carrying capacity of Sarotherodon melanotheron blood in different acclimation media. J. Anim. Vet. Adv. 6, 932937. Google Scholar
Aronson, L.R., 1949, An analysis of reproductive behaviour in the mouthbreeding cichlid fish, Tilapia macrocephala (Bleeker). Zoologica 34, 133158. Google Scholar
Avarre, J.-C., Dugué, R., Alonso, P., Diombokho, A., Joffrois, C., Faivre, N., Cochet, C., Durand, J.-D., 2014, Analysis of the black-chinned tilapia Sarotherodon melanotheron heudelotii reproducing under a wide range of salinities: from RNA-seq to candidate genes. Mol. Ecol. Resour. 14, 139149. CrossRefGoogle Scholar
Brown-Peterson, N., Peterson, M.S., 1990, Comparative life history of female mosquitofish, Gambusia affinis, in tidal freshwater and oligohaline habitats. Environ. Biol. Fishes 27, 3341. CrossRefGoogle Scholar
Chervinsky J., 1982, Environmental physiology of tilapias. In: Pullin R.S.V., Lowe-McConnell R.H. (Eds.), The Biology and Culture of Tilapias. Manila, ICLARM, pp. 119–129.
Cissé A., 1988, Effects of varying protein levels on spawning frequency and growth of Sarotherodon melanotheron. In: Pullin R.S.V., Bhukaswan T., Tonguthai K., Maclean J.L. (Eds.), The Second Symposium on Tilapia in Aquaculture. Manila, ICLARM Conf. Proc. 15, pp. 329–333.
Coward, K., Bromage, N.R., 1999, Spawning frequency, egg size and ovarian histology in groups of Tilapia zillii maintained upon two distinct food ration sizes from first-feeding to sexual maturity. Aquat. Living. Resour. 12, 1122. CrossRefGoogle Scholar
Crear, D., 1980, Observations on the reproductive state of milkfish populations (Chanos chanos) from hypersaline ponds on Christmas Island (Pacific Ocean). Proc. World Mar. Soc. 11, 548556. CrossRefGoogle Scholar
Diouf, K., Panfili, J., Labonne, M., Aliaume, C., Tomas, J., Do Chi, T., 2006, Effects of salinity on strontium:calcium ratios in the otoliths of the West African black-chinned tilapia Sarotherodon melanotheron in a hypersaline estuary. Environ. Biol. Fishes 77, 920. CrossRefGoogle Scholar
Duponchelle, F., Legendre, M., 2001, Rapid phenotypic changes of reproductive traits in response to modification of spatial structure in Nile tilapia, Oreochromis niloticus. Aquat. Living Resour. 14, 145152. CrossRefGoogle Scholar
Fridman, S., Bron, J.E., Rana, K.J., 2012, Ontogenic changes in the osmoregulatory capacity of the Nile tilapia Oreochromis niloticus and implications for aquaculture. Aquaculture 356, 243249. CrossRefGoogle Scholar
Gardell, A.M., Yang, J., Sacchi, R., Fangue, N.A., Hammock, B.D., Kültz, D., 2013, Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis. J. Exp. Biol. 216, 46154625. CrossRefGoogle ScholarPubMed
Gilles, S., Zamora, L., Amiel, C., Nuñez-Rodriguez, J., 2004, Comparative study of reproductive characteristics of the euryhaline tilapia, Sarotherodon melanotheron heudelotii in fresh and sea waters. J. Aquac. Trop. 19, 277284. Google Scholar
Gilles, S., Lacroix, G., Corbin, D., Ba, N., Luna, C.I., Nandjui, J., Ouattara, A., Ouedraogo, O., Lazzaro, X., 2008, Mutualism between euryhaline tilapia Sarotherodon melanotheron heudelotii and Chlorella sp. - Implications for nano-algal production in warmwater phytoplankton-based recirculating systems. Aquac. Eng. 39, 113121. CrossRefGoogle Scholar
Gilles, S., Fargier, L., Lazzaro, X., Baras, E., De Wilde, N., Drakides, C., Amiel, C., Rispal, B., Blancheton, J.-P., 2013, An integrated fish-plankton aquaculture system in brackish water. Animal 7, 322329. CrossRefGoogle ScholarPubMed
Guèye M., Tine M., Kantoussan J., Ndiaye P., Thiaw O.T., Albaret J.-J., 2012, Comparative analysis of reproductive traits in black-chinned tilapia females from various coastal marine, estuarine and freshwater ecosystems. PLoS One 7(1), e29464.
Jobling M., 1994, Fish Bioenergetics. London, Chapman and Hall.
Keenleyside M.H.A. (Ed.), 1991, Cichlid Fishes. Behaviour, Ecology and Evolution. London, Chapman and Hall.
Legendre, M., Cosson, J., Alavi, S.M.H., Linhart, O., 2008, Activation of sperm motility in the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859) acclimatized to fresh, sea and hypersaline waters. Cybium 32, 181182. Google Scholar
Legendre, M., Ecoutin, J.-M., 1989, Suitability of brackish water tilapia species from the Ivory Coast for lagoon aquaculture. I - Reproduction. Aquat. Living Resour. 2, 7179. CrossRefGoogle Scholar
Legendre M., Ecoutin J.-M., 1996, Aspects of the reproductive strategy of Sarotherodon melanotheron: comparison between a natural population (Ebrie Lagoon, Côte d’Ivoire) and different cultured populations. In: Pullin R.S.V., Lazard J., Legendre M., Amon Kothias J.-B., Pauly D. (Eds.), The Third Symposium on Tilapia in Aquaculture. Manila, ICLARM Conf. Proc. 41, pp. 326–338.
Legendre M., Trébaol L., 1996, Mouthbrooding efficiency and spawning frequency of Sarotherodon melanotheron (Rüppel, 1852) in culture environments (Ebrié Lagoon, Côte d’Ivoire). In: Pullin R.S.V., Lazard J., Legendre M., Amon Kothias J.-B., Pauly D. (Eds.), The Third Symposium on Tilapia in Aquaculture. Manila, ICLARM Conf. Proc. 41, pp. 339–348.
Lévêque C., 1999, Les peuplements des lacs peu profonds. In: Lévêque C., Paugy D. (Eds.), Les poissons des eaux continentales africaines : diversité, écologie, utilisation par l’homme. Montpellier, IRD, pp. 311–323.
Likongwe, J.S., Stecko, T.D., Stauffer, J.R.Jr., Carline, R.F., 1996, Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linnaeus). Aquaculture 146, 3746. CrossRefGoogle Scholar
Lorin-Nebel, C., Avarre, J.-C., Faivre, N., Wallon, S., Charmantier, G., Durand, J.-D., 2012, Osmoregulatory strategies in natural populations of the black-chinned tilapia Sarotherodon melanotheron exposed to extreme salinities in West African estuaries. J. Comp. Physiol. B 182, 771780. CrossRefGoogle ScholarPubMed
Mironova, N.V., 1977, Energy expenditure on egg production in young Tilapia mossambica and the influence of maintenance conditions on their reproductive intensity. J. Ichthyol. 17, 627633. Google Scholar
Naddafi, R., Abdoli, A., Kiabi, B.H., Amiri, B.M., Karami, M., 2005, Age, growth and reproduction of the Caspian roach (Rutilus rutilus caspicus) in the Anzali and Gomishan wetlands, North Iran. J. Appl. Ichthyol. 21, 492497. CrossRefGoogle Scholar
Ndiaye A., 2012, Réponses du tilapia Sarotherodon melanotheron aux stress multiples (salinité et contaminants chimiques) : approche multi-paramétrique. Université Montpellier 2, Thèse de Doctorat.
Nordlie, F.G., Walsh, S.J., Haney, D.C., Nordlie, T.F., 1991, The influence of ambient salinity on routine metabolism in the teleost Cyprinodon variegatus Lacepède. J. Fish Biol. 38, 115122. CrossRefGoogle Scholar
Ouattara, N., Bodinier, C., Nègre-Sadargues, G., D’Cotta, H., Messad, S., Charmantier, G., Panfili, J., Baroiller, J.-F., 2009, Changes in gill ionocyte morphology and function following transfer from fresh to hypersaline waters in the tilapia Sarotherodon melanotheron. Aquaculture 290, 155164. CrossRefGoogle Scholar
Panfili, J., Mbow, A., Durand, J.-D., Diop, K., Diouf, K., Thior, D., Ndiaye, P., Laë, R., 2004, Influence of salinity on the life-history traits of the West African blackchinned tilapia (Sarotherodon melanotheron): comparison between the Gambia and Saloum estuaries. Aquat. Living Resour. 17, 6574. CrossRefGoogle Scholar
Panfili, J., Thior, D., Ecoutin, J.-M., Ndiaye, P., Albaret, J.-J., 2006, Influence of salinity on the size at maturity for fish species reproducing in contrasting West African estuaries. J. Fish Biol. 69, 95113. CrossRefGoogle Scholar
Papah, M.B., Kisia, S.M., Ojoo, R.O., Makanya, A.N., Wood, C.M., Kavembe, G.D., Maina, J.N., Johannsson, O.E., Bergman, H.L., Laurent, P., Chevalier, C., Bianchini, A., Bianchini, L.F., Onyango, D.W., 2013, Morphological evaluation of spermatogenesis in Lake Magadi tilapia (Alcolapia grahami): a fish living on the edge. Tissue Cell 45, 371382. CrossRefGoogle ScholarPubMed
Plaut, I., 2000, Resting metabolic rate, critical swimming speed, and routine activity of the euryhaline cyprinodontid, Aphanius dispar, acclimated to a wide range of salinities. Physiol. Biochem. Zool. 73, 590596. CrossRefGoogle ScholarPubMed
Rao, T.R., 1975, Salinity tolerance of laboratory-reared larvae of the California killifish, Fundulus parvipinnis Girard. J. Fish Biol. 7, 783790. CrossRefGoogle Scholar
Reardon, E.E., Chapman, L.J., 2008, Reproductive seasonality in a swamp-locked African cichlid. Ecol. Freshw. Fish 17, 2029. CrossRefGoogle Scholar
Reardon, E.E., Chapman, L.J., 2012, Fish embryo and juvenile size under hypoxia in the mouth-brooding African cichlid Pseudocrenilabrus multicolor. Curr. Zool. 58, 401412. CrossRefGoogle Scholar
Riou, V., Ndiaye, A., Budzinski, H., Dugué, R., Le Ménach, K., Combes, Y., Bossus, M., Durand, J.-D., Charmantier, G., Lorin-Nebel, C., 2012, Osmoregulatory strategies in natural populations of the black-chinned tilapia Sarotherodon melanotheron exposed to extreme salinities in West African estuaries. Comp. Biochem. Physiol. C 156, 716. Google Scholar
Russell, D.J., Thuesen, P.A., Thomson, F.E., 2012. Reproductive strategies of two invasive tilapia species Oreochromis mossambicus and Tilapia mariae in northern Australia. J. Fish Biol. 80, 21762197. CrossRefGoogle ScholarPubMed
Santiago, C.B., Aldaba, M.B., Abuan, E.F., Laron, M.A., 1985, The effects of artificial diets on fry production and growth of Oreochromis niloticus breeders. Aquaculture 47, 193203. CrossRefGoogle Scholar
Shaw, E.S., Aronson, L.R., 1954, Oral incubation in Tilapia macrocephala. Am. Mus. Nat. Hist. 103, 380415. Google Scholar
Schofield, P.J., Peterson, M.S., Lowe, M.R., Brown-Peterson, N.J., Slack, W.T., 2011, Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities. Mar. Freshw. Res. 62, 439449. CrossRefGoogle Scholar
Simier, M., Blanc, L., Aliaume, C., Diouf, P.S., Albaret, J.-J., 2004, Spatial and temporal structure of fish assemblages in an “inverse estuary”, the Sine Saloum system (Senegal). Estuar. Coast. Shelf Sci. 59, 6986. CrossRefGoogle Scholar
Tine, M., Bonhomme, F., McKenzie, D.J., Durand, J.-D., 2010, Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecol. 10, 11. CrossRefGoogle ScholarPubMed
Tine, M., de Lorgeril, J., D’Cotta, H., Pepey, E., Bonhomme, F., Baroiller, J.-F., Durand, J.-D., 2008, Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes. Mar. Genom. 1, 3746. CrossRefGoogle ScholarPubMed
Townshend, T.J., Wootton, R.J., 1984, Effects of food supply on the reproduction of the convict cichlid, Cichlasoma nigrofasciatum. J Fish Biol. 24, 91104. CrossRefGoogle Scholar
Trewavas E., 1983, Tilapine fishes of the genera Sarotherodon, Oreochromis and Danakilia. London, British Museum.
von Kraft, A., Peters, H.M., 1963, Fecundity, egg weight and oocyte development in tilapias (Cichlidae, Teleostei). Z. Zellforsch. Mikrosk. Anat. 61, 434485 (in German). Translated in English and edited by Pauly D., 1983. Manila: ICLARM Translations 2. Google Scholar
Watanabe, W.O., Burnett, K.M., Olla, B.L., Wicklund, R.I., 1989, The effects of salinity on reproductive performance of Florida red tilapia. J. World Aquac. Soc. 20, 223229. CrossRefGoogle Scholar
Whitfield, A.K., Taylor, R.H., Fox, C., Cyrus, D.P., 2006, Fishes and salinities in the St Lucia estuarine system – a review. Rev. Fish Biol. Fish. 16, 120. CrossRefGoogle Scholar
Wood, C.M., Wilson, P., Bergman, H.L., Bergman, A.N., Laurent, P., Otiang’a-Owiti, G., Walsh, P.J., 2002, Obligatory urea production and the cost of living in the Magadi tilapia revealed by acclimation to reduced salinity and alkalinity. Physiol. Biochem. Zool. 75, 111122. CrossRefGoogle ScholarPubMed
Wood, C.M., Bergman, H.L., Bianchini, A., Laurent, P., Maina, J., Johannsson, O.E., Bianchini, L.F., Chevalier, C., Kavembe, G.D., Papah, M.B., Ojoo, R.O., 2012. Transepithelial potential in the Magadi tilapia, a fish living in extreme alkalinity. J. Comp. Physiol. B 182, 247258. CrossRefGoogle ScholarPubMed
Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N., 1982, Living with water stress: evolution of osmolyte systems. Science 217, 12141222. CrossRefGoogle ScholarPubMed