Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T23:12:50.178Z Has data issue: false hasContentIssue false

Reading skill and exposure to orthography influence speech production

Published online by Cambridge University Press:  13 April 2015

MEREDITH SALETTA*
Affiliation:
University of Iowa
LISA GOFFMAN
Affiliation:
Purdue University
DIANE BRENTARI
Affiliation:
University of Chicago
*
ADDRESS FOR CORRESPONDENCE Meredith Saletta, Department of Communication Sciences and Disorders, University of Iowa, Wendell Johnson Speech and Hearing Center, Iowa City, IA 52242. E-mail: [email protected]

Abstract

Orthographic experience during the acquisition of novel words may influence production processing in proficient readers. Previous work indicates interactivity among lexical, phonological, and articulatory processing; we hypothesized that experience with orthography can also influence phonological processing. Phonetic accuracy and articulatory stability were measured as adult, proficient readers repeated and read aloud nonwords, presented in auditory or written modalities and with variations in orthographic neighborhood density. Accuracy increased when participants had read the nonwords earlier in the session, but not when they had only heard them. Articulatory stability increased with practice, regardless of whether nonwords were read or heard. Word attack skills, but not reading comprehension, predicted articulatory stability. Findings indicate that kinematic and phonetic accuracy analyses provide insight into how orthography influences implicit language processing.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alario, F. X., Perre, L., Castel, C., & Ziegler, J. C. (2007). The role of orthography in speech production revisited. Cognition, 102, 464475. doi:10.1016/j.cognition.2006.02.002CrossRefGoogle ScholarPubMed
Assink, E. M. H., van Bergen, F., van Teeseling, H., & Knuijt, P. P. N. A. (2004). Semantic priming effects in normal versus poor readers. Journal of Genetic Psychology, 165, 6779.CrossRefGoogle ScholarPubMed
Berry, D. C., & Broadbent, D. E. (1984). On the relationship between task performance and associated verbalizable knowledge. Quarterly Journal of Experimental Psychology, A: Human Experimental Psychology, 36, 209231.CrossRefGoogle Scholar
Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008). Neural correlates of orthographic and phonological consistency effects in children. Human Brain Mapping, 29, 14161429. doi:10.1002/hbm.20476CrossRefGoogle ScholarPubMed
Booth, J. R., Bebko, G., Burman, D. D., & Bitan, T. (2007). Children with reading disorder show modality independent brain abnormalities during semantic tasks. Neuopsychologia, 45, 775783. doi:10.1016/j.neuropsychologia.2006.08.015CrossRefGoogle ScholarPubMed
Brown, G. D. A., & Deavers, R. P. (1999). Units of analysis in nonword reading: Evidence from children and adults. Journal of Experimental Child Psychology, 73, 208242.CrossRefGoogle ScholarPubMed
Burgos, P., Cucchiarini, C., van Hout, R., & Strik, H. (2014). Phonology acquisition in Spanish learners of Dutch: Error patterns in pronunciation. Language Sciences, 41, 129142. doi:http://dx.doi.org/10.1016/j.langsci.2013.08.015CrossRefGoogle Scholar
Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain: Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 10531063. doi:10.1093/brain/121.6.1053CrossRefGoogle ScholarPubMed
Castro-Caldas, A., & Reis, A. (2003). The knowledge of orthography is a revolution in the brain. Reading and Writing, 16, 8197. doi:10.1023/A:1021798106794CrossRefGoogle Scholar
Coltheart, M., Devalaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In Dornic, S. (Ed.), Attention and performance VI (pp. 535555). Hilldale, NJ: Erlbaum.Google Scholar
Damian, M., & Bowers, J. (2003). Effects of orthography on speech production in a form-preparation paradigm. Journal of Memory and Language, 49, 119132. doi:10.1016/S0749-596X(03)00008-1CrossRefGoogle Scholar
Dich, N. (2011). Individual differences in the size of orthographic effects in spoken word recognition: The role of listeners’ orthographic skills. Applied Psycholinguistics, 32, 169186. doi:10.1017/S0142716410000330CrossRefGoogle Scholar
Ehri, L. C. (1991). Development of the ability to read words. In Barr, R., Kamil, M., Mosenthal, P., & Pearson, P. (Eds.), Handbook of reading research (Vol. 2, pp. 1417). White Plains, NY: Longman.Google Scholar
Ehri, L. C., & Wilce, L. S. (1980). The influence of orthography on readers’ conceptualization of the phonemic structure of words. Applied Psycholinguistics, 1, 371385.CrossRefGoogle Scholar
Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (1999). Effects of lexicality, frequency, and spelling-to-sound consistency on the functional anatomy of reading. Neuron, 24, 205218.CrossRefGoogle ScholarPubMed
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: A multilingual comparison. Journal of Experimental Psychology: Human Perception and Performance, 13, 104115.Google ScholarPubMed
Gebauer, G. F., & Mackintosh, N. J. (2007). Psychometric intelligence dissociates implicit and explicit learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 3454.Google ScholarPubMed
Gladfelter, A., & Goffman, L. (2013). The influence of prosodic stress patterns and semantic depth on novel word learning in typically developing children. Language and Learning Development, 9, 151174. doi:10.1080/15475441.2012.684574CrossRefGoogle ScholarPubMed
Goffman, L., Gerken, L., & Lucchesi, J. (2007). Relations between segmental and motor variability in prosodically complex nonword sequences. Journal of Speech, Language, and Hearing Research, 50, 444458. doi:10.1044/1092-4388(2007/031)CrossRefGoogle ScholarPubMed
Goldrick, M., Baker, H. R., Murphy, A., & Baese-Berk, M. (2011). Interaction and representational integration: Evidence from speech errors. Cognition, 121, 5872. doi:10.1016/j. cognition.2011.05.006CrossRefGoogle ScholarPubMed
Hammill, D. D., Brown, V. L., Larsen, S. C., & Wiederholt, J. L. (2011). Test of adolescent and adult language (3rd ed.). San Antonio, TX: Pearson.Google Scholar
Heisler, L., Goffman, L., & Younger, B. (2010). Lexical and articulatory interactions in children's language production. Developmental Science, 13, 722730. doi:10.1111/j.1467-7687.2009. 00930.xCrossRefGoogle ScholarPubMed
Hoff, E. (2001). Language development. Belmont, CA: Wadsworth.Google Scholar
Jacobs, A. M., & Grainger, J. (1994). Models of visual word recognition: Sampling the state of the art. Journal of Experimental Psychology, Human Perception and Performance, 20, 13111334.CrossRefGoogle Scholar
Jaffe, L. E. (2009). Development, interpretation, and application of the W score and the relative proficiency index (Woodcock–Johnson III Assessment Service Bulletin No. 11). Rolling Meadows, IL: Riverside.Google Scholar
Kamhi, A. G., & Catts, H. W. (2012). Reading development. In Kamhi, A. G. & Catts, H. W. (Eds.), Language and reading disabilities (3rd ed., pp. 2444). Boston: Pearson.Google Scholar
Lavidor, M., Johnston, R., & Snowling, M. J. (2006). When phonology fails: Orthographic neighbourhood effects in dyslexia. Brain and Language, 96, 318329. doi:10.1016/j.bandl.2005.06.009CrossRefGoogle ScholarPubMed
Masonheimer, P., Drum, P., & Ehri, L. (1984). Does environmental print identification lead children into word learning? Journal of Reading Behavior, 16, 257271.CrossRefGoogle Scholar
Mathworks, Inc. (2009). Matlab: High performance numeric computation and visualization software [Computer software]. Natic, MA: Author.Google Scholar
McMillan, C. T., Corley, M., & Lickley, R. J. (2009). Articulatory evidence for feedback and competition in speech production. Language and Cognitive Processes, 24, 4466. doi:10.1080/01690960801998236CrossRefGoogle Scholar
Miller, K. M., & Swick, D. (2003). Orthography influences the perception of speech in alexic patients. Journal of Cognitive Neuroscience, 15, 981990.CrossRefGoogle ScholarPubMed
Morais, J., Cary, L., Alegria, J., & Bertelson, P. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7, 323331.CrossRefGoogle Scholar
Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165178.CrossRefGoogle Scholar
Ohala, D. K. (1996). Cluster reduction and constraints on acquisition. Unpublished doctoral dissertation, University of Arizona, Tucson.Google Scholar
Pattamadilok, C., Perre, L., Dufau, S., & Ziegler, J. (2009). On-line orthographic influences on spoken language in a semantic task. Journal of Cognitive Neuroscience, 21, 169179. doi:10.1162/jocn.2009.21014CrossRefGoogle Scholar
Pierrehumbert, J. (2002). Word-specific phonetics. In Gussenhoven, C. & Warner, N. (Eds.), Laboratory phonology VII (pp. 101140). Berlin: Mouton.CrossRefGoogle Scholar
Poldrack, R. A., Prabhakaran, V., Seger, C. A., & Gabrieli, J. D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564574.CrossRefGoogle ScholarPubMed
Rapp, B., & Goldrick, M. (2000). Discreteness and interactivity in spoken word production. Psychological Review, 107, 460499.CrossRefGoogle ScholarPubMed
Rastle, K., McCormick, S. F., Bayliss, L., & Davis, C. J. (2011). Orthography influences the perception and production of speech. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 15881594. doi:10.1037/a0024833Google ScholarPubMed
Read, C., Zhang, Y. F., Nie, H. Y., & Ding, B. Q. (1986). The ability to manipulate speech sounds depends on knowing alphabetic spelling. Cognition, 24, 3144.CrossRefGoogle Scholar
Rucker, G., Schwarzer, G., Carpenter, J., & Olkin, I. (2009). Why add anything to nothing? The arcsine difference as a measure of treatment in a meta-analysis with zero cells. Statistics in Medicine, 28, 721738. doi:10.1002/sim.3511CrossRefGoogle Scholar
Saletta, M., Darling White, M., Ryu, J. H., Haddad, J. M., Goffman, L., Francis, E. J., et al. (2014). The relationship between speech and balance in individuals with Parkinson's disease. Manuscript in preparation.Google Scholar
Seidenberg, M. S., & Tanenhaus, M. K. (1979). Orthographic effects on rhyme monitoring. Journal of Experimental Psychology: Human Learning and Memory, 5, 546554.Google Scholar
Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self-teaching. Journal of Experimental Child Psychology, 87, 267298. doi:10.1016/j.jecp. 2004.01.001CrossRefGoogle Scholar
Smith, A., & Goffman, L. (1998). Stability and patterning of speech movement sequences in children and adults. Journal of Speech, Language, and Hearing Research, 41, 1830.CrossRefGoogle ScholarPubMed
Smith, A., Goffman, L., Zelaznik, H. N., Ying, G., & McGillem, C. (1995). Spatiotemporal stability and patterning of movement sequences. Experimental Brain Research, 104, 493501.CrossRefGoogle ScholarPubMed
Smith, A., Johnson, M., McGillem, C., & Goffman, L. (2000). On the assessment of stability and patterning of speech movements. Journal of Speech, Language, and Hearing Research, 43, 277286. doi:1092-4388/00/4301-0277CrossRefGoogle ScholarPubMed
Smith, A., & Zelaznik, H. N. (2004). Development of functional synergies for speech motor coordination in childhood and adolescence. Developmental Psychobiology, 45, 2233. doi:10. 1002/dev.20009CrossRefGoogle ScholarPubMed
Snow, C. E., Burns, M. S., & Griffin, P. (Eds.). (1998). Preventing reading difficulties in young children. Washington, DC: National Academy Press.Google Scholar
Sommers, M. (2002). Washington University in St. Louis Speech and Hearing Lab Neighborhood Database. Retrieved from http://128.252.27.56/neighborhood/Home.asp on April 28, 2014.Google Scholar
Storkel, H. (2013). A corpus of consonant-vowel-consonant real words and nonwords: Comparison of phonotactic probability, neighborhood density, and consonant age of acquisition. Behavioral Research, 44, 11591167. doi:10.3758/s13428-012-0309-7CrossRefGoogle Scholar
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson Education.Google Scholar
Thomas, K. M., Hunt, R. H., Vizueta, N., Sommer, T., Durston, S., Yang, Y., et al. (2004). Evidence of developmental differences in implicit sequence learning: An fMRI study of children and adults. Journal of Cognitive Neuroscience, 16, 13391351.CrossRefGoogle ScholarPubMed
Ventura, P., Kolinsky, R., Brito-Mendes, C., & Morais, J. (2001). Mental representations of the syllable internal structure are influenced by orthography. Language and Cognitive Processes, 16, 393418. doi:10.1080/01690960042000184CrossRefGoogle Scholar
Ventura, P., Morais, J., & Kolinsky, R. (2007). The development of the orthographic consistency effect in speech recognition: From sublexical to lexical involvement. Cognition, 105, 547576. doi:10.1016/j.cognition.2006.12.005CrossRefGoogle ScholarPubMed
Ventura, P., Morais, J., Pattamadilok, C., & Kolinsky, R. (2004). The locus of the orthographic consistency effect in auditory word recognition. Language and Cognitive Processes, 19, 5795.CrossRefGoogle Scholar
Vitevitch, M. S. (2002). The influence of phonological similarity neighborhoods on speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 735747. doi:10.1037//0278-7393.28.4.735Google ScholarPubMed
Vitevitch, M. S., Luce, P. A., Charles-Luce, J., & Kemmerer, D. (1997). Phonotactics and syllable stress: Implications for the processing of spoken nonsense words. Language and Speech, 40, 4762.CrossRefGoogle ScholarPubMed
Walsh, B., & Smith, A. (2002). Articulatory movements in adolescents: Evidence for protracted development of speech motor control processes. Journal of Speech, Language, and Hearing Research, 45, 11191133. doi:1092-4388/02/4506-1119CrossRefGoogle ScholarPubMed
Walsh, B., Smith, A., & Weber-Fox, C. (2006). Short-term plasticity in children's speech motor systems. Developmental Psychobiology, 48, 660674. doi:10.1002/dev.20185CrossRefGoogle ScholarPubMed
Weber-Fox, C., Spencer, R., Cuadrado, E., & Smith, A. (2003). Development of neural processes mediating rhyme judgments: Phonological and orthographic interactions. Developmental Psychobiology, 43, 128145. doi:10.1002/dev.10128CrossRefGoogle ScholarPubMed
Woodcock, R. W. (2011). Woodcock Reading Mastery Tests—Revised-Normative update. San Antonio, TX: Pearson.Google Scholar
Xie, Q., Gao, X., & King, R. B. (2013). Thinking styles in implicit and explicit learning. Learning and Individual Differences, 23, 267271. doi:10.1016/j.lindif.2012.10.014CrossRefGoogle Scholar
Zecker, S. G. (1991). The orthographic code: Developmental trends in reading-disabled and normally-achieving children. Annals of Dyslexia, 41, 178192. doi:10.1007/BF02648085CrossRefGoogle ScholarPubMed
Zeguers, M. H. T., Snellings, P., Tijms, J., Weeda, W. D., Tamboer, P., Bexkens, A., et al. (2011). Specifying theories of developmental dyslexia: A diffusion model analysis of word recognition. Developmental Science, 14, 13401354. doi:10.1111/j.1467-7687.2011.01091.xCrossRefGoogle ScholarPubMed
Ziegler, J. C., & Ferrand, L. (1998). Orthography shapes the perception of speech: The consistency effect in auditory word recognition. Psychonomic Bulletin & Review, 5, 683689.CrossRefGoogle Scholar
Ziegler, J. C., Ferrand, L., & Montant, M. (2004). Visual phonology: The effects of orthographic consistency on different auditory word recognition tasks. Memory & Cognition, 32, 732741.CrossRefGoogle ScholarPubMed
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131, 329.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Jacobs, A. M., & Klueppel, D. (2001). Pseudohomophone effects in lexical decision: Still a challenge for current word recognition models. Journal of Experimental Psychology: Human Perception and Performance, 27, 547559.Google Scholar
Ziegler, J. C., & Muneaux, M. (2007). Orthographic facilitation and phonological inhibition in spoken word recognition: A developmental study. Psychonomic Bulletin and Review, 14, 7580.CrossRefGoogle ScholarPubMed
Ziegler, J. C., Muneaux, M., & Grainger, J. (2003). Neighborhood effects in auditory word recognition: Phonological competition and orthographic facilitation. Journal of Memory and Language, 48, 779793.CrossRefGoogle Scholar
Ziegler, J. C., Van Orden, G. C., & Jacobs, A. M. (1997). Phonology can help or hurt the perception of print. Journal of Experimental Psychology: Human Perception and Performance, 23, 845860.Google ScholarPubMed
Zipke, M., Ehri, L. C., & Smith Cairns, H. (2009). Using semantic ambiguity instruction to improve third graders’ metalinguistic awareness and reading comprehension: An experimental study. Reading Research Quarterly, 44, 300321. doi:10.1598/RRQ.44.3.4CrossRefGoogle Scholar