Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T01:52:04.379Z Has data issue: false hasContentIssue false

Examples of the nonexistence of a solution in the presence of upper and lower solutions

Published online by Cambridge University Press:  17 February 2009

Patrick Habets
Affiliation:
Institut de Mathématique Pure et Appliquée, Chemin du Cyclotron, 2, 1348 Louvain-La-Neuve, Belgium.
Rodrigo L. Pouso
Affiliation:
Dept. de Análise Matemática, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain; e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Standard results for boundary value problems involving second-order ordinary differential equations ensure that the existence of a well-ordered pair of lower and upper solutions together with a Nagumo condition imply existence of a solution. In this note we introduce some examples which show that existence is not guaranteed if no Nagumo condition is satisfied.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Bailey, P. B., Shampine, L. F. and Waltman, P. E., Nonlinear two point boundary value problems (Academic Press, New York, 1968).Google Scholar
[2]Bernstein, S., “Sur certaines équations différentielles ordinaires du second ordre”, C.R.A. Sci. Paris 138 (1904) 950951.Google Scholar
[3]Fučík, S., Solvability of nonlinear equations and boundary value problems (Reidel, Dordrecht, 1980).Google Scholar
[4]Nagumo, M., “Über die differentialgleichung y″ = f (t, y, y′)”, Proc. Phys-Math. Soc. Japan 19 (1937) 861866.Google Scholar
[5]Nagumo, M., “On principally linear elliptic differential equations of the second order”, Osaka Math. J. 6 (1954) 207229.Google Scholar
[6]Picard, E., “Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires”, J. de Math. 9 (1893) 217271.Google Scholar
[7]Piccinini, L. C., Stampacchia, G. and Vidossich, G., Ordinary differential equations in n: Problems and methods, Appl. Math. Sciences 39 (Springer, 1984).Google Scholar
[8]Rouche, N. and Mawhin, J., Equations différentielles ordinaires (Masson, Paris, 1973).Google Scholar
[9]Scorza Dragoni, G., “Il problema dei valori ai limiti studiato in grande per gli integrali di una equazione differenziale del secondo ordine”, Giornale di Mat. (Battaglini) 69 (1931) 77112.Google Scholar
[10]Scorza Dragoni, G., “Intorno a un criterio di esistenza per un problema di valori ai limiti”, Rend. Semin. R. Accad. Naz. Lincei 28 (1938) 317325.Google Scholar