Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T01:06:54.240Z Has data issue: false hasContentIssue false

EFFECT OF UNIFORM WIND FLOW ON MODULATIONAL INSTABILITY OF TWO CROSSING WAVES OVER FINITE DEPTH WATER

Published online by Cambridge University Press:  31 August 2018

SUMANA KUNDU*
Affiliation:
Salkia Mrigendra Dutta Smriti Balika Vidyapith (High), Salkia, Howrah-711106, India email [email protected]
SUMA DEBSARMA
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India email [email protected], [email protected]
K. P. DAS
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India email [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of uniform wind flow on modulational instability of two crossing waves is studied here. This is an extension of an earlier work to the case of a finite-depth water body. Evolution equations are obtained as a set of three coupled nonlinear equations correct up to third order in wave steepness. Figures presented in this paper display the variation in the growth rate of instability of a pair of obliquely interacting uniform wave trains with respect to the changes in the air-flow velocity, depth of water medium and the angle between the directions of propagation of the two wave packets. We observe that the growth rate of instability increases with the increase in the wind velocity and the depth of water medium. It also increases with the decrease in the angle of interaction of the two wave systems.

Type
Research Article
Copyright
© 2018 Australian Mathematical Society 

References

Bascom, W., Waves and beaches: The dynamics of the ocean surface (Anchor Books, Doubleday, 1980).Google Scholar
Bliven, L. F., Huang, N. E. and Long, S. R., “Experimental study of the influence of wind on Benjamin–Feir sideband instability”, J. Fluid Mech. 162 (1986) 237260; doi:10.1017/S0022112086002033.Google Scholar
Brunetti, M. and Kasparian, J., “Modulational instability in wind-forced wave”, Phys. Lett. A 378 (2014) 36263630; doi:10.1016/j.physleta.2014.10.017.Google Scholar
Chabchoub, A., “Tracking breather dynamics in irregular sea state conditions”, Phys. Rev. Lett. 117 (2016) 144103; doi:10.1103/PhysRevLett.117.144103.Google Scholar
Chabchoub, A., Hoffmann, N., Branger, H., Kharif, C. and Akhmediev, N., “Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model”, Phys. Fluids 25 (2013) 101704; doi:10.1063/1.4824706.Google Scholar
Davey, A. and Stewartson, K., “On three dimensional packets of surface waves”, Proc. R. Soc. Lond. A338 (1974) 101110; doi:10.1098/rspa.1974.0076.Google Scholar
Debsarma, S., Kundu, S. and Das, K. P., “Modulational instability of two crossing waves in the presence of wind flow”, Ocean Model. 94 (2015) 2732; doi:10.1016/j.ocemod2015.07.017.Google Scholar
Debsarma, S., Senapati, S. and Das, K. P., “Wind-forced modulations in crossing sea states over infinite depth water”, Phys. Fluids 26 (2014) 096606; doi:10.1063/1.4896031.Google Scholar
Dhar, A. K. and Das, K. P., “A fourth-order evolution equation for deep water surface gravity waves in the presence of wind blowing over water”, Phys. Fluids A2 (1990) 778783; doi:10.1063/1.857731.Google Scholar
Dhar, A. K. and Das, K. P., “Fourth order nonlinear equation for two stokes wave trains in deep water”, Phys. Fluids A 3 (1991) 30213026; doi:10.1063/1.858209.Google Scholar
Dyachenko, A. I. and Zakharov, V. E., “Modulation instability of Stokes wave $\rightarrow$ Freak wave”, JETP Lett. 81 (2005) 255259; doi:10.1134/1.1931010.Google Scholar
Dysthe, K., Krogstad, H. E. and Muller, P., “Oceanic rogue waves”, Annu. Rev. Fluid Mech. 40 (2008) 287310; doi:40.111406.10220.Google Scholar
Gramsted, O., Zeng, H., Trulsen, K. and Pedersen, G. K., “Freak waves in weakly nonlinear unidirectional wave trains over a slopping bottom in shallow water”, Phys. Fluids 25 (2013) 122103; doi:10.1063/1.4847035.Google Scholar
Janssen, P., The interaction of ocean waves and wind (Cambridge University Press, Cambridge, 2004); ISBN-13: 978-0521121040, ISBN-10: 0521121043.Google Scholar
Kharif, C., Giovanangeli, J. P. F. J. T., Grare, L. and Pelinovsky, L., “Influence of wind on extreme wave events: experimental and numerical approaches”, J. Fluid Mech. 594 (2008) 209247; doi:10.1017/S0022112007009019.Google Scholar
Kharif, C. and Pelinovsky, E., “Physical mechanism of the rogue wave phenomenon”, Eur. J. Mech. B Fluids 22 (2003) 603634; doi:10.1016/j.euromechflu.2003.09.002.Google Scholar
Kharif, C., Pelonovsky, E. and Slunyaev, A., Rogue waves in the ocean (Springer, New York, 2009); ISBN: 978-3-540-88418-7.Google Scholar
Kundu, S., Debsarma, S. and Das, K. P., “Modulational instability in crossing sea states over finite depth water”, Phys. Fluids 25 (2013) 066605; doi:10.1063/1.4811695.Google Scholar
Leblanc, S., “Amplification of nonlinear surface waves by wind”, Phys. Fluids 19 (2007) 101705; doi:10.1063/1.2786002.Google Scholar
Leblanc, S., “Wind-forced modulations of finite-depth gravity waves”, Phys. Fluids 20 (2008) 116603; doi:10.1063/1.3026551.Google Scholar
Miles, J. W., “On the generation of surface waves by shear flows”, J. Fluid Mech. 3 (1957) 185204; doi:10.1017/s0022112057000567.Google Scholar
Miles, J. W., “On the generation of surface waves by turbulent shear flows”, J. Fluid Mech. 7 (1960) 469478; doi:10.1017/s0022112060000220.Google Scholar
Onorato, M., Osborne, A. R. and Serio, M., “Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves”, Phys. Rev. Lett. 96 (2006) 014503; doi:10.1103/PhysRevLett.96.014.Google Scholar
Onorato, M. and Proment, D., “Triggering rogue waves in opposing currents”, Phys. Rev. Lett. 107 (2011) 184502; doi:10.1103/PhysRevLett107.114502.Google Scholar
Onorato, M., Residori, S., Bertolozzo, U., Montina, A. and Arecchi, F. T., “Rogue waves and their generating mechanisms in different physical contexts”, Phys. Rep. 528 (2013) 4789; doi:10.1016/j.physrep.2013.03.Google Scholar
Peirson, W. L. and Garcia, A. W., “On the wind-induced growth of slow water waves of finite steepness”, J. Fluid Mech. 608 (2008) 243278; doi:10.1017/S002211200800205X.Google Scholar
Ruban, V. P., “On the nonlinear Schrödinger equation for waves on a nonuniform current”, JETP Lett. 95 (2012) 486491; doi:10.1134/S002136401209010X.Google Scholar
Senapati, S., Kundu, S., Debsarma, S. and Das, K. P., “Nonlinear evolution equations in crossing seas in the presence of uniform wind flow”, Eur. J. Mech. B Fluids 60 (2016) 110118; doi:10.1016/j.euromechflu2016.06.014.Google Scholar
Shukla, P. K., Kourakis, I., Eliasson, B., Marklund, M. and Stenflo, L., “Instability and evolution of nonlinear interacting water waves”, Phys. Rev. Lett. 97 (2006) 094501; doi:10.1103/PhysRevLett.97.094.Google Scholar
Toffoli, A., Proment, D., Salman, H., Monbaliu, J., Frascoli, F., Dafilis, M., Stramignoni, E., Forza, R., Manfrin, M. and Onorato, M., “Wind generated rogue waves in an annular wave flume”, Phys. Rev. Lett. 118 (2017) 144503; doi:10.1103/PhysRevLett.118.144503.Google Scholar
Toffoli, A., Waseda, T., Houtani, H., Kinoshita, T., Collins, K. and Proment, D., “Excitation of rogue waves in a variable medium: An experimental study on the interaction of water waves and currents”, Phys. Rev. Lett. E87 (2013) 051201(R); doi:10.1103/PhysRevE.87.051201.Google Scholar
Waseda, T. and Tulin, M. P., “Experimental Study of the stability of deep-water wave trains including wind effects”, J. Fluid Mech. 401 (1999) 5584; doi:10.1017/S00221120990-06527.Google Scholar