Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T16:38:34.603Z Has data issue: false hasContentIssue false

AN ALTERNATIVE METHOD OF CONCEPT LEARNING

Published online by Cambridge University Press:  06 March 2017

SEN WANG
Affiliation:
School of Mathematics, Shandong University, Jinan 250100, China email [email protected], [email protected]
QINGXIANG FANG
Affiliation:
School of Science, China Jiliang University, Hangzhou 310018, China email [email protected]
JUN-E FENG*
Affiliation:
School of Mathematics, Shandong University, Jinan 250100, China email [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We solve the problem of concept learning using a semi-tensor product method. All possible hypotheses are expressed under the framework of a semi-tensor product. An algorithm is raised to derive the version space. In some cases, the new approach improves the efficiency compared to the previous approach.

MSC classification

Type
Research Article
Copyright
© 2017 Australian Mathematical Society 

References

Cheng, D., “Semi-tensor product of matrices and its application to Morgen’s problem”, Sci. China Inf. Sci. 44 (2001) 195212; doi:10.1007/BF02714570.Google Scholar
Cheng, D. and Qi, H., “Controllability and observability of Boolean control networks”, Automatica 45 (2009) 16591667; doi:10.1016/j.automatica.2009.03.006.Google Scholar
Cheng, D. and Qi, H., “A linear representation of dynamics of Boolean networks”, IEEE Trans. Automat. Control 55(10) (2010) 22512258; doi:10.1109/TAC.2010.2043294.Google Scholar
Cheng, D., Qi, H., Li, Z. and Liu, J., “Stability and stabilization of Boolean networks”, Internat. J. Robust Nonlinear Control 21 (2011) 134156; doi:10.1002/rnc.1581.CrossRefGoogle Scholar
Haussler, D., “Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework”, Artificial Intelligence 36 (1988) 177221; doi:10.1016/0004-3702(88)90002-1.Google Scholar
Mitchell, T. M., Machine learning (McGraw-Hill, Boston, MA, 1997); https://www.iitgn.ac.in/sites/default/files/library_files/2016/19032016.pdf.Google Scholar
Mitchell, T. M., “Version spaces: a candidate elimination approach to rule learning”, in: IJCAI’77 Proceedings of the 5th international joint conference on Artificial intelligence - Volume 1 (Morgan Kaufmann Publishers Inc., San Francisco, CA, 1977) 305310; http://dl.acm.org/citation.cfm?id=1624501.Google Scholar
Zhao, Y., Qi, H. and Cheng, D., “Input-state incidence matrix of Boolean control networks and its applications”, Systems Control Lett. 59 (2010) 767774; doi:10.1016/j.sysconle.2010.09.002.Google Scholar