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Abstract

We solve the problem of concept learning using a semi-tensor product method. All
possible hypotheses are expressed under the framework of a semi-tensor product. An
algorithm is raised to derive the version space. In some cases, the new approach
improves the efficiency compared to the previous approach.

2010 Mathematics subject classification: 68T01.

Keywords and phrases: concept learning, version space, semi-tensor product, target
concept, all possible hypotheses.

1. Introduction

Concept learning has become a significant problem in artificial learning. It involves
deriving general concepts from positive and negative training examples. For instance,
there is a task of learning to predict the value of an attribute EnjoySport as in Table 1,
based on the value of six other attributes, such as Sky, AirTemp, Humidity, Wind, Water
and Forecast. Some of the training examples are provided in Table 1 [6].

Suppose that the concept is a rule by which we determine the value of an attribute
based on n other attributes. Since each attribute is two-valued, it can be represented
by a Boolean variable. Thus, the concept to be learned can be expressed as a Boolean
function f : Dn →D, where D denotes the set {0, 1}. In this paper, we consider the
common case that the concept is composed of a conjunction of constraints on instance
attributes. In other words, the concept y = f (x), where y ∈ D, x = (x1, x2, . . . , xn),
xi ∈ D, i = 1, 2, . . . , n, can be equivalently described as

y = f1(x1) ∧ f2(x2) ∧ · · · ∧ fn(xn),
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212 S. Wang, Q. Fang and J. Feng [2]

Table 1. Positive and negative training examples for the target concept EnjoySport.

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport
1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes

where fi :D→D, i = 1, 2, . . . , n, are a series of Boolean functions and ∧ denotes the
corresponding conjunction operation. Let the scalar form of a Boolean value, 0 and
1, be equivalently expressed in the vector form, (0, 1)T and (1, 0)T, respectively. The
conjunction operation “∧” of two Boolean values in vector form is defined as[

1
0

]
∧

[
1
0

]
=

[
1
0

]
,

[
1
0

]
∧

[
0
1

]
=

[
0
1

]
,[

0
1

]
∧

[
1
0

]
=

[
0
1

]
,

[
0
1

]
∧

[
0
1

]
=

[
0
1

]
.

Define the target concept as the concept to be learned and denote it by c, that is,
c :Dn →D. The task is to hypothesize or estimate c. We use the symbol H to denote
the set of all possible hypotheses. In this paper,

H = {h :Dn →D | ∃hi :D→D, i = 1, 2, . . . , n, such that
h(x1, x2, . . . , xn) ≡ h1(x1) ∧ h2(x2) ∧ · · · ∧ hn(xn), x j ∈ D, j = 1, 2, . . . , n}.

Note that c ∈ H. Now we can write the ordered pair 〈x, c(x)〉, with x ∈ Dn, to describe
a training example. Let D be the set of training examples. We define that a hypothesis
h is consistent with a set of training examples D if h(x) = c(x) for any 〈x, c(x)〉 in D.
We denote it as consistent(h,D).

The version space, VS H,D, is defined as

VS H,D ≡ {h ∈ H | consistent(h, D)}.

A candidate-elimination approach is presented here to derive the version space [7].
The semi-tensor product (stp), presented by Cheng, becomes a powerful tool to

study Boolean networks [1]. In recent years, many fruitful results have been obtained
via stp [2–4, 8]. This paper provides an effective approach to derive the version space
using stp.

The rest of the paper is organized as follows. Section 2 introduces some definitions
and notations of stp. In Section 3, main results are derived. Based on them, an
algorithm is presented to obtain the version space. Finally, a comparison between
the new approach and the candidate-elimination algorithm is given in the concluding
remarks in Section 4.
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2. Preliminaries

In this section, we introduce some symbols and definitions used in this paper.
Let δi

n be the ith column of the identity matrix In and

∆n = {δ1
n, δ

2
n, . . . , δ

n
n}.

We simply use ∆ = ∆2 when n = 2.
For a matrix A, let Col(A) and Row(A) be the sets of columns and rows of A,

respectively. A matrix L ∈ Mn×s is called a logical matrix if Col(L) ⊂ ∆n. Denote
the set of n × s logical matrices by Ln×s. Write the ith column of matrix A as coli(A)
and the ith row of matrix A as rowi(A).

Let A = (ai j) ∈ Rm×n and B = (bi j) ∈ Rp×q, and denote the least common multiple of
n and p by t. Then the stp of A and B is defined as

A n B = (A ⊗ It/n)(B ⊗ It/p) ∈ Rmt/n×qt/p,

where ⊗ is the Kronecker product [1].
Since stp is a generalization of the conventional matrix product, n is omitted from

the symbol nn
i=1 when no ambiguity occurs.

Lemma 2.1. If x ∈ ∆2n is given, there exist x1, x2, . . . , xn ∈ ∆ such that x = nn
i=1xi, and

each xi is uniquely determined.

For any set C, let |C| denote the cardinality (the number of elements) of C.

3. Main results

In this section, we adopt the vector form of Boolean values. Consider the necessary
and sufficient condition where a function

y = Mx, (3.1)

M ∈ L2×2n , x = nn
i=1xi, xi ∈ ∆, can also be equivalently expressed as

y = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn), (3.2)

Mk ∈ L2×2, k = 1, 2, . . . , n. Here x is the argument. Each Mk consists of two
columns. If there exists a column (1, 0)T in Mk, we write the corresponding column
number as ikj, 1 6 j 6 2. Set Ck = {ik1} when Mk has only one (1, 0)T column, or
Ck = {ik1, i

k
2} when Mk has two (1, 0)T columns, or Ck = ∅ when Mk has no (1, 0)T

column. Note that given equation (3.2), there always exists M ∈ L2×2n such that
Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x = nn

i=1xi, xi ∈ ∆, i = 1, 2, . . . , n.

Proposition 3.1. Given Mk ∈ L2×2, k = 1, 2, . . . , n, there exists x = nn
i=1xi, xi ∈ ∆, i =

1, 2, . . . , n, such that (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) = (1, 0)T if and only if for all
k ∈ {1, 2, . . . , n}, Ck , ∅.
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Proof. Consider Mixi = col1(Mi) if xi = (1, 0)T, and Mixi = col1(Mi) if xi = (0, 1)T.
There exists x = nn

i=1xi such that (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) = (1, 0)T if and only
if each Mi has a column (1, 0)T. �

Suppose that equation (3.1) is equivalently written as equation (3.2). In fact, if
there exists a (1, 0)T column in M, we can obtain that each Mk has at least one (1, 0)T

column and each corresponding (1, 0)T column is determined. It is demonstrated in
the following examples.

Example 3.2. Assume that M = δ2[1, 2, 2, 2]. Since col1(M) = (1, 0)T, when x = δ1
4,

Mx = 1. Consider that x = x1 n x2, so x1 = δ1
2 and x2 = δ1

2. Then we can conclude that
col1(M1) = (1, 0)T and col1(M2) = (1, 0)T. Thus, C1 = {1}, and C2 = {1}.

Example 3.3. Suppose that M = δ2[1, 1, 2, 2]. Similarly, we have C1 = {1}, C2 = {1, 2}.

Example 3.4. If M = δ2[1, 2, 1, 1], we will show that equation (3.1) cannot be
written as equation (3.2). From col1(M) = (1, 0)T, we can derive that col1(M1) =

(1, 0)T, col1(M2) = (1, 0)T. Similarly, col2(M1) = (1, 0)T and col2(M2) = (1, 0)T.
If Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn), x = nn

i=1xi, xi ∈ ∆, i = 1, 2, . . . , n, then
col2(M) = (1, 0)T, which is a contradiction.

Proposition 3.5. If equation (3.1) is equivalently written as equation (3.2) and
Ck , ∅, k = 1, 2, . . . , n, then |{i | coli(M) = (1, 0)T}| = 2|{k| |Ck |=2}|.

Proof. From equation (3.2), in order that Mx = (1, 0)T, let x = nn
i=1xi take values as

follows. If |Ck| = 1, we take xk = ik1. If |Ck| = 2, we take xk = ik1 or ik2. Therefore, there
are two values to be taken for xk when |Ck| = 2. Thus, x can take 2|{k| |Ck |=2}| values to
make Mx = (1, 0)T. Now, the result follows immediately. �

Note that even if |{i | coli(M) = (1, 0)T}| = 2|{k| |Ck |=2}|, we cannot conclude that
equation (3.1) can be equivalently expressed as equation (3.2).

Proposition 3.6. Suppose that |{i | coli(M) = (1, 0)T}| = 2m, m ∈ Z+ and coli j (M) =

(1, 0)T, j = 1, 2, . . . , 2m. Let nn
k=1z j

k = δ
i j

2n , j = 1, 2, . . . , 2m, z j
k ∈ ∆. Write z j

k = δ
pk, j

2 .
If Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x = nn

i=1xi, xi ∈ ∆, i = 1, 2, . . . , n, then
colpk, j (Mk) = (1, 0)T, j = 1, 2, . . . , 2m, k = 1, 2, . . . , n.

Proof. Consider that coli j (M) = (1, 0)T. Thus, Mδ
i j

2n = (1, 0)T. That is, when x =

nn
k=1xk = δ

i j

2n , Mx = (1,0)T. Therefore, when xk = δ
pk, j

2n , k = 1, 2, . . . , n, Mx = (M1x1) ∧
(M2x2) ∧ · · · ∧ (Mnxn) = (1, 0)T. It is clear that colpk, j (Mk) = (1, 0)T. �

Example 3.7. Consider the matrix M = δ2[1, 2, 1, 1] with col3(M) = (1, 0)T, and δ3
4 =

δ2
2 n δ

1
2. Then col2(M1) = (1, 0)T and col1(M2) = (1, 0)T. Parallel results about other

columns of M can be similarly derived.
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Given δi j

2n and k ∈ {1, 2, . . . , n}, z j
k = S n

kδ
i j

2n , where S n
k is defined as follows: [2]

S n
1 = δ2[1, . . . , 1︸   ︷︷   ︸

2n−1

, 2, . . . , 2︸   ︷︷   ︸
2n−1

],

S n
2 = δ2[1, . . . , 1︸   ︷︷   ︸

2n−2

, 2, . . . , 2︸   ︷︷   ︸
2n−2

, 1, . . . , 1︸   ︷︷   ︸
2n−2

, 2, . . . , 2︸   ︷︷   ︸
2n−2

],

...

S n
n = δ2[1, 2, 1, 2, . . . , 1, 2].

Combining this with Proposition 3.6, we obtain the following result.

Proposition 3.8. Suppose that

{i | coli(M) = (1, 0)T} = {i1, i2, . . . , i2m}

and

Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x = nn
i=1xi, xi ∈ ∆, i = 1, 2, . . . , n.

For any k ∈ {1, 2, . . . , n}, if col(S n
k[δi1

2n , δ
i2
2n , . . . , δ

i2m

2n ]) contains δ1
2, then col1(Mk) =

(1, 0)T and, if col(S n
k[δi1

2n , δ
i2
2n , . . . , δ

i2m

2n ]) contains δ2
2, then col2(Mk) = (1, 0)T.

Example 3.9. For the matrix M = δ2[1, 2, 1, 1], observe that col1(M) = col3(M) =

col4(M) = (1, 0)T. We calculate that

S 2
1[δ1

4, δ
3
4, δ

4
4] = [δ1

2, δ
2
2, δ

2
2].

Then col1(M1) = col2(M1) = (1, 0)T. Similarly, from S 2
2[δ1

4, δ
3
4, δ

4
4] = [δ1

2, δ
1
2, δ

2
2], we

can derive that col1(M2) = col2(M2) = (1, 0)T.

Conversely, suppose that there is a set {i1, i2, . . . , is} ⊂ {1, 2, . . . , 2n} such that
coli j (M) = (1, 0)T, j = 1, 2, . . . , s, and Mk ∈ L2×2 satisfying the following conditions:
for any k ∈ {1, 2, . . . , n}, if col(S n

k[δi1
2n , δ

i2
2n , . . . , δ

is
2n ]) contains δ1

2, then col1(Mk) =

(1, 0)T and, if col(S n
k[δi1

2n , δ
i2
2n , . . . , δ

is
2n ]) contains δ2

2, then col2(Mk) = (1, 0)T, and other
columns of Mk are (0, 1)T. Let X1 = {x | x = nn

i=1xi, xi ∈ ∆, i = 1, 2, . . . , n, (M1x1) ∧
(M2x2) ∧ · · · ∧ (Mnxn) = (1, 0)T}; then Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all
x = nn

i=1xi ∈ X1, xi ∈ ∆, i = 1, 2, . . . , n.
Suppose that {i | coli(M) = (1, 0)T} = {i1, i2, . . . , i2m} and {i | coli(M) = (0, 1)T} =

{q1, q2, . . . , qt}. Now set Ck as follows.

Ck = {i | i ∈ {1, 2}, δi
2 ∈ col(S n

k[δi1
2n , δ

i2
2n , . . . , δ

i2m

2n ])}.

Given j ∈ {1, 2, . . . , t}, let S n
kδ

q j

2n = δ
γk

j

2 , k = 1, 2, . . . , n. Then we have the following
result.

Proposition 3.10. If Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x = nn
i=1xi, xi ∈

∆, i = 1, 2, . . . , n, then there exists k ∈ {1, 2, . . . , n} such that colγk
j
(Mk) = (0, 1)T.
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Proof. For all k ∈ {1, 2, . . . , n}, assume that colγk
j
(Mk) = (1, 0)T. It is natural that

colq j (M) = (1, 0)T, which contradicts the construction of {q1, q2, . . . , qt}. �

Conversely, suppose that there are some matrices Mk ∈ L2×2, k = 1, 2, . . . , n.
Consider (1, 2)δγ2 = γ, γ ∈ {1, 2}. Define two sets

K = {i | i ∈ {1, 2, . . . , 2n},∃k ∈ {1, 2, . . . , n} such that col(1, 2)S n
kδ

i
2n

(Mk) = (0, 1)T}

and

X2 = {x | x = nn
i=1xi, xi ∈ ∆, i = 1, 2, . . . , n,

(M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) = (0, 1)T}.

If there exists a matrix M ∈ L2×2n such that for any i ∈ K, coli(M) = (0, 1)T, then
Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x = nn

k=1xk ∈ X2, xk ∈ ∆, k = 1, 2, . . . , n.

Example 3.11. Let M = δ2[2, 2, 1, 2]. Since col1(M) = δ2
2, S 2

1δ
1
4 = δ1

2 and S 2
2δ

2
4 = δ1

2,
we can see that (0, 1)T ∈ {col1(M1), col1(M2)}.

Now we calculate 
S n

1
S n

2
...

S n
n


[
δ

q1
2n δ

q2
2n · · · δ

qt
2n

]
=


δ
γ1

1
2 δ

γ1
2

2 · · · δ
γ1

t
2

δ
γ2

1
2 δ

γ2
2

2 · · · δ
γ2

t
2

...
...

...

δ
γn

1
2 δ

γn
2

2 · · · δ
γn

t
2


(3.3)

and denote

N =


γ1

1 γ
1
2 · · · γ

1
t

γ2
1 γ

2
2 · · · γ

2
t

...
...

...
γn

1 γ
n
2 · · · γ

n
t

 .
Combining these with Proposition 3.10, we obtain the following result.

Proposition 3.12. If Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x = nn
i=1xi, xi ∈

∆, i = 1, 2, . . . , n, then for any col j(N) = [γ1
j , γ

2
j , . . . , γ

n
j ]

T, there exists k ∈ {1, 2, . . . , n}
such that colγk

j
(Mk) = (0, 1)T.

Denote the training example as Te ⊂ ∆2n . For any x ∈ Te, let yx be the target function
value of x in vector form, where the target function means the Boolean function
representing the target concept.

Now we introduce an element �, called the null element.

Definition 3.13. For a set A, define the nominal set of A as A� = A ∪ {�}, where � is
the null element.
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Assume that no operation is defined between � and other elements in a nominal set.
Let

P =
(
{1, 2} \C1

)�
×

(
{1, 2} \C2

)�
× · · · ×

(
{1, 2} \Cn

)�
. (3.4)

Define the operator “↔” as

x↔ y =

{
1, x = y,
0, x , y,

where x, y ∈ R. For two matrices A = (ai j), B = (bi j) of the same dimensions, let matrix
A↔ B = (ai j ↔ bi j). Assume that there is at most one (0, 1)T column in each Mk.

Theorem 3.14. Equation (3.1) is equivalent to equation (3.2) and there exists x ∈ ∆2n

such that Mx = (1, 0)T if and only if:

(1) for all k ∈ {1, 2, . . . , n}, Ck , ∅; (3.5)
(2) there exists p ∈ P, for all j ∈ {1, 2, . . . , t}, p↔ col j(N) contains an element 1.

(3.6)

Proof. If (3.6) holds, let the corresponding

p = (p1, p2, . . . , pn)T.

When pk , �, set colpk (Mk) = (0, 1)T and col{1, 2}\pk (Mk) = (1, 0)T. And, when pk = �,
write Mk = δ2[1, 1]. Let

X1 ={x | x = nn
i=1xi, xi ∈ ∆, i = 1, 2, . . . , n, (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) = (1, 0)T}

and

X2 ={x | x = nn
i=1xi, xi ∈ ∆, i = 1, 2, . . . , n, (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) = (0, 1)T}.

From the discussion above, we can verify that Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧
(Mnxn) for all x = nn

i=1xi ∈ X1, xi ∈ ∆, i = 1, 2, . . . , n, if p ∈ P. Similarly, Mx =

(M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x = nn
i=1xi ∈ X2, xi ∈ ∆, i = 1, 2, . . . , n, if p↔

col j(N) contains an element 1. Then suppose that (3.5) holds. From Proposition 3.8,
note that Ck = Ck, k = 1, 2, . . . , n. Combining this with Proposition 3.1, we see that
there exists x ∈ ∆2n such that Mx = (1, 0)T.

Conversely, suppose that Mx = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) for all x =

nn
i=1xi, xi ∈ ∆, i = 1, 2, . . . , n. From Proposition 3.8, it follows that Ck = Ck, k =

1, 2, . . . , n. Since there exists x ∈ ∆2n such that Mx = (1, 0)T, from Proposition 3.1,
we obtain (3.5). Construct p′ = (p′1, p′2, . . . , p′n)T as follows. If Mk = δ2[1, 1], set
p′k = �. Otherwise, let p′k satisfy colp′k (Mk) = (0, 1)T. Then we can verify that p′ ∈ P.
By Proposition 3.12, we also have that p′ ↔ col j(N) contains an element 1 for any
j ∈ {1, 2, . . . , t}. �

We obtain the version space by using Algorithm 1. The correctness of this algorithm
follows from the proof of Theorem 3.14.
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Algorithm 1
Step 1. Construct M satisfying for all x ∈ Te, Mx = yx. The columns of M which
are not involved are undetermined.
Step 2. Suppose that in step 1, we determine that {i | coli(M) = (1, 0)T} =

{i1, i2, . . . , is} and {i | coli(M) = (0, 1)T} = {q1, q2, . . . , qt}. Then let

Ck = Ck = {i | i ∈ {1, 2}, δi
2 ∈ col(S n

k[δi1
2n , δ

i2
2n , . . . , δ

is
2n ])}.

Calculate P and N as those from (3.3) and (3.4).
Step 3. Set Pad = ∅. For all the elements p ∈ P, verify whether for all j ∈
{1, 2, . . . , t}, p↔ col j(N) contains the element 1. If so, add p to Pad.
Step 4. We can derive the version space {y = (M1x1) ∧ (M2x2) ∧ · · · ∧ (Mnxn) |
p = (p1, p2, . . . , pn)T ∈ Pad. If pk , �, then colpk (Mk) = (0, 1)T. Otherwise, Mk =

δ2[1, 1], k = 1, 2, . . . , n}.

4. Conclusion

In this paper, an alternative method of concept learning has been established within
the new framework of stp. To develop this theory, the core problem is to obtain the
necessary and sufficient condition where a function in form (3.1) can be equivalently
expressed in form (3.2). Since it is solved, the algorithm for finding the version space
naturally evolves as a byproduct.

Here, we give a comparison between our algorithm and an existing method. In
the process of the candidate-elimination approach, which is the traditional way to
derive the version space, two sets called general boundary and specific boundary
need to be maintained. For each element in training examples D, the two sets are
changed accordingly. Thus, the iteration times are given by |D|. Besides, Haussler
[5] concluded that the dimension of the general boundary increases exponentially
according to the scale of |D| (see [7] for more details).

Algorithm 1 is required to store a 2 × 2n matrix M. In step 2, matrix Ck is computed
n times, and each time it involves the product of two matrices whose dimensions are
2 × 2n and 2n × 2n. At most 2n elements are contained in the set P and the dimension of
N is at most n × 2n. The iteration times in step 3 are |P| and, at a time, the running time
is O(n). Therefore, the computation complexity increases exponentially according to
the number of attributes. So, whether Algorithm 1 is more efficient than the existing
one depends on different situations.
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